Modeling of properties of a droplet on a partially wetted solid surface
Rekhviashvili S. Sh. 1, Sokurov A. A. 1
1Institute of Applied Mathematics and Automatization, Kabardino-Balkar Scientific Center, Russian Academy of Sciences, Nalchik, Russia
Email: rsergo@mail.ru

PDF
Analytical and numerical modeling of some physical properties of droplet on a partially wetted solid surface in thermodynamic equilibrium is carried out. The modeling technique is based on the use of the Lennard-Jones pair interatomic potential and the continuum approximation for interacting atoms. The density functional theory in the electron gas approximation is used to calculate the potential parameters. New formulas for the potential energy of interaction of a droplet with a substrate and the work of adhesion are derived, the condition for the stability failure of a droplet is formulated. Numerical calculations are performed for the Li (droplet)-Ni (substrate) system. Keywords: density functional theory, droplet, work of adhesion, stability, continuum approximation, pairwise interatomic interaction.
  1. K. Zhou, B. Liu. Molecular Dynamics Simulation: Fundamentals and Applications (Elsevier, 2022)
  2. M. Rieth. Nano-Engineering in Science and Technology: An Introduction to the World of Nano-Design (World Scientific Publishing Company, 2003)
  3. S.K. Das, S.A. Egorov, P. Virnau, D. Winter, K. Binder. J. Phys.: Condens. Matter, 30 (25), 255001 (2018). DOI: 10.1088/1361-648X/aac363
  4. I.W. Plesner. J. Chem. Phys., 40 (6), 1510 (1964). DOI: 10.1063/1.1725355
  5. A.V. Neimark. J. Adhes. Sci. Technol., 13 (10), 1137 (1999). DOI: 10.1163/156856199X00839
  6. H.T. Dobbs. Int. J. Mod. Phys. B, 13 (27), 3255 (1999). DOI: 10.1142/S0217979299003003
  7. L. Boinovich, A. Emelyanenko. Colloids Surf. A Physicochem. Eng. Asp., 383, 10 (2011). DOI: 10.1016/j.colsurfa.2010.12.020
  8. D.S. Corti, K.J. Kerr, K. Torabi. J. Chem. Phys., 135 (2), 024701 (2011). DOI: 10.1063/1.3609274
  9. D.V. Tatyanenko, A.K. Shchekin. Colloid J. 81 (4), 455 (2019). DOI: 10.1134/S1061933X19030153
  10. A.I. Rusanov. Colloid J., 82 (5), 567 (2020). DOI: 10.1134/S1061933X20050142
  11. T.S. Lebedeva, D. Suh, A.K. Shchekin. Mechan. Solids, 55 (1), 55 (2020). DOI: 10.3103/S0025654420010161
  12. M.Aa. Gjennestad, O. Wilhelmsen. Fluid Ph. Equilibria, 505, 112351 (2020). DOI: 10.1016/j.fluid.2019.112351
  13. B. Bhushan. Springer Handbook of Nanotechnology. 3rd ed. (Springer-Verlag, Berlin, 2010)
  14. Y. Han, J. Li, T. Chen, B. Gao, H. Wang. Analyst, 148, 4591 (2023). DOI: 10.1039/D3AN01045G
  15. K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama. Vvedenie v fiziku poverkhnosti (Nauka, M., 2005) (in Russian)
  16. D. Bonn, D. Ross. Rep. Prog. Phys., 64, 1085 (2001). DOI: 10.1088/0034-4885/64/9/202
  17. P.E. Theodorakis, E.R. Smith, R.V. Craster, E.A. Muller, O.K. Matar. Fluids., 4 (4), 176 (2019). DOI: 10.3390/fluids4040176
  18. Yu.S. Barash. Sily Van-der-Vaalsa (Nauka, M., 1988) (in Russian)
  19. R.G. Gordon, Y.S. Kim. J. Chem. Phys., 56 (6), 3122 (1972). DOI: 10.1063/1.1677649
  20. M. Waldman, R.G. Gordon. J. Chem. Phys., 71 (3), 1325 (1972). DOI: 10.1063/1.438433
  21. G.V. Dedkov. Phys. Usp., 38, 877 (1995). DOI: 10.1070/PU1995v038n08ABEH000100
  22. T.G. Strand, R.A. Bonham. J. Chem. Phys., 40 (6), 1686 (1964). DOI: 10.1063/1.1725380
  23. S. Zhen, G.J. Davies. Phys. Stat. Sol. (a), 78 (2), 595 (1983). DOI: 10.1002/pssa.2210780226
  24. F. Wang, H. Wu. Soft Matter., 9 (24), 5703 (2013). DOI: 10.1039/C3SM50530H
  25. W. Qiang, B. Wang, Q. Li, W. Wang. Chem. Phys. Lett., 695, 112 (2018). DOI: 10.1016/j.cplett.2018.02.001
  26. S.K. Sethi, S. Kadian, G. Manik. Arch. Computat. Methods Eng., 29, 3059 (2022). DOI: 10.1007/s11831-021-09689-1
  27. C. Zhao, Y. Lin, X. Wu. Mater. Today Commun., 32, 103968 (2022). DOI: 10.1016/j.mtcomm.2022.103968
  28. S.I. Matyukhin, K.Yu. Frolenkov. Kondensirovannye sredy i mezhfaznye granitsy, 5 (2), 216 (2003) (in Russian)
  29. S.Sh. Rekhviashvili, E.V. Kishtikova. Protection Metals Phys. Chem. Surf., 50 (1), 1 (2014). DOI: 10.1134/S2070205114010110
  30. A.B. Alchagirov, Kh.B. Khokonov. High Temperature, 32 (5), 707 (1994)
  31. B.B. Alchagirov, L.Kh. Afaunova, F.F. Dyshekova, A.G. Mozgovoi, T.M. Taova, R.Kh. Arkhestov. High Temperature, 47 (2), 287 (2009). DOI: 10.1134/S0018151X09020205
  32. R.N. Abdullaev, Yu.M. Kozlovskii, R.A. Khairulin, S.V. Stankus. Int. J. Thermophys., 36 (4), 603 (2015). DOI: 10.1007/s10765-015-1839-x
  33. J. Wang, H. Wang, J. Xie, A. Yang, A. Pei, C. Wu, F. Shi, Y. Liu, D. Lin, Y. Gong, Y. Cui. Energy Stor. Mater., 14, 345 (2018). DOI: 10.1016/j.ensm.2018.05.021
  34. H.W. Dauison. Compilation of Thermophysical Properties of Liquid Lithium (National Aeronautics and Space Administration, Washington, D.C. 1968)
  35. A.W. Adamson, A.P. Gast. Physical Chemistry of Surfaces (Wiley, NY., 1997)
  36. V.I. Nizhenko, L.I. Floka. Poverkhnostnoe natyazhenie metallov i splavov (Metallurgiya, M., 1981) (in Russian)
  37. S.-H. Wang, J. Yue, W. Dong, T.-T. Zuo, J.-Y. Li, X. Liu, X.-D. Zhang, L. Liu, J.-L. Shi, Y.-X. Yin, Y.-G. Guo. Nat. Commun., 10, 4930 (2019). DOI: 10.1038/s41467-019-12938-4
  38. A.I. Rusanov, V.A. Prokhorov. Interfacial Tensiometry (Elsevier, 1996)
  39. E.V. Galaktionov, N.E. Galaktionova, E.A. Tropp. Tech. Phys., 61 (12), 1781 (2016)
  40. A.A. Sokurov. Kondensirovannye sredy i mezhfaznye granitsy, 20 (3), 460 (2018). DOI: 10.17308/kcmf.2018.20/583

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru