Model of the Peltier spin effect in nonmagnetic chiral conductors
Igyatjev V. K.1
1Volgograd State University, Volgograd, Russia
Email: vkignatjev@yandex.ru

PDF
It is shown that in a polycrystalline conductor with a helicity chiral structure and a strong spin-orbit interaction, the generation of a longitudinally polarized spin current and the heat flux associated with it are possible. At a given density of the charge current, the heat flux density depends on the local temperature, but not on its gradient, and is proportional to the lattice thermal conductivity coefficient. Keywords: spin caloritronics, spin thermohalvanic effects, spin-orbit interaction, spin-phonon Hamiltonian, locally quasi-equilibrium distribution, helicity chiral crystal, polycrystalline conductor.
  1. J. Flipse, F.K. Dejene, D. Wagenaar, G.E.W. Bauer, J.B. Youssef, B.J. van Wees. Phys. Rev. Lett., 113, 027601 (2014). DOI: 10.1103/PhysRevLett.113.027601
  2. K. Uchida, T. Nonaka, T. Ota, E. Saitoh. Appl. Phys. Lett., 97, 262504 (2010). DOI: 10.1063/1.3533397
  3. S. Daimon, R. Iguchi, T. Hioki, E. Saitoh, K. Uchida. Nature Commun., 7, 13754 (2016). DOI: 10.1038/ncomms13754
  4. V. Basso, M. Kuepferling, A. Sola, P. Ansalone, M. Pasquale. IEEE Magn. Lett., 9, 3104704 (2018). DOI: 10.1109/LMAG.2018.2852292
  5. S. Daimon, K. Uchida, N. Ujiie, Y. Hattori, R. Tsuboi, E. Saitoh. Appl. Phys. Express, 13 (10), 103001 (2020). DOI: 10.35848/1882-0786/abb2b5
  6. T. Yamazaki, R. Iguchi, T. Ohkubo, H. Nagano, K. Uchida. Phys. Rev. B, 101, 020415(R) (2020). DOI: 10.1103/PhysRevB.101.020415
  7. T. Yamazaki, R. Iguchi, H. Nagano, K. Uchida. J. Phys. D: Appl. Phys., 54 (35), 354001 (2021). DOI: 10.1088/1361-6463/ac0843
  8. A. Takahagi, T. Hirai, R. Iguchi, K. Nakagawara, H. Nagano, K. Uchida. Appl. Phys. Express, 15 (6), 063002 (2022). DOI: 10.35848/1882-0786/ac6fae
  9. A. Sola, V. Basso, M. Kuepferling, C. Dubs, M. Pasquale. Scientific Reports, 9, 2047 (2019). DOI: 10.1038/s41598-019-38687-4
  10. K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, E. Saitoh. Nature, 455 (7214), 778 (2008). DOI: 10.1038/nature07321
  11. H. Adachi, K. Uchida, E. Saitoh, S. Maekawa. Reports Prog. Phys., 76, 036501 (2013). DOI: 10.1088/0034-4885/76/3/036501
  12. S.S. Costa, L. Sampaio. J. Phys. D: Appl. Phys., 53 (35), 355001 (2020). DOI: 10.1088/1361-6463/ab8bfc
  13. R. Yahiro, T. Kikkawa, R. Ramos, K. Oyanagi, T. Hioki, S. Daimon, E. Saitoh. Phys. Rev. B, 101 (2), 024407 (2020). DOI: 10.1103/PhysRevB.101.024407
  14. S.S. Costa, L. Sampaio. J. Magn. Magn. Mater., 547 (1), 168773 (2022). DOI: 10.1016/j.jmmm.2021.168773
  15. J. Capps, D.C. Marinescu, A. Manolescu. Phys. Rev. B, 93, 085307 (2016). DOI: 10.1103/PhysRevB.93.085307
  16. K. Yamada, Y. Kurokawa, K. Kogiso, H. Yuasa, M. Shima. IEEE Trans. Mag., 55 (2), 4500104 (2019). DOI: 10.1109/TMAG.2018.2865199
  17. K. Oyanagi, S. Takahashi, T. Kikkawa, E. Saitoh. Phys. Rev. B, 107, 014423 (2023). DOI: 10.1103/PhysRevB.107.014423
  18. Y. Ohnuma, M. Matsuo, S. Maekawa. Phys. Rev. B, 96, 134412 (2017). DOI: 10.1103/PhysRevB.96.134412
  19. K. Uchida. Proc. Jpn. Acad., Ser. B, 97 (2), 69 (2021). DOI: 10.2183/pjab.97.004
  20. K. Kim, E. Vetter, L. Yan, C. Yang, Z. Wang, R. Sun, Y. Yang, A.H. Comstock, X. Li, J. Zhou, L. Zhang. Nature Mater., 22, 322 (2023). DOI: 10.1038/s41563-023-01473-9
  21. T. Yu, Z. Luo, G.E.W. Bauer. Phys. Reports, 1009, 1 (2023). DOI: 10.1016/j.physrep.2023.01.002
  22. Y. Kousaka. Nihon Kessho Gakkaishi, 60 (4), 185 (2018). DOI: 10.5940/jcrsj.60.185
  23. A.A. Fraerman. ZhETF, 163 (6), 822 (2023) (in Russian). DOI: 10.31857/S0044451023060081
  24. S.M. Stishov, A.E. Petrova. UFN, 193 (6), 614 (in Russian). 2023). DOI: 10.3367/UFNr.2021.11.039104
  25. S.W. Im, H.-Y. Ahn, R.M. Kim, N.H. Cho, H. Kim, Ya.-Ch. Lim, H.-E. Lee, K.T. Nam. Adv. Mater., 32 (41), 1905758 (2020). DOI: 10.1002/adma.201905758
  26. L. Sohncke. Entwicklung Einer Theorie Der Kristallstruktur (Teubner, Leipzig, Germany, 1879)
  27. R.M. Hazen. Progress in Biological Chirality (Elsevier, NY., 2004), p. 137-151
  28. N. Shukla, A.J. Gellman. Nature Mater., 19, 939 (2020). DOI: 10.1038/s41563-020-0734-4
  29. K. Soai, S. Osanai, K. Kadowaki, S. Yonekubo, T. Shibata, I. Sato. J. Am. Chem. Soc., 121, 11235 (1999). DOI: 10.1021/ja993128t
  30. G.H. Fecher, J. Kubler, C. Felser. Materials, 15, 5812 (2022). DOI: 10.3390/ma15175812
  31. R.L. Segall, K.A. Shoaib. The Philosophical Magazine: A J. Theor. Experimental Appl. Phys., 2 (172), 713 (1970). DOI: 10.1080/14786437008238457
  32. S.U. Abbas, J.-J. Li, X. Liu, A. Siddique, Y.-X. Shi, M. Hou, K. Yang, F. Nosheen, X.-Ya Cui, G.-Ch. Zheng, Zh.-Ch. Zhang. Rare Met., 42 (8), 2489 (2023). DOI: 10.1007/s12598-023-02274-4
  33. J. Sharma, R. Chhabra, A. Cheng, J. Brownell, Y. Liu, H. Yan. Science, 323 (5910), 112 (2009). DOI: 10.1126/science.1165831
  34. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics (Course of Theoretical Physics Volume 4) (Butterworth-Heinemann; 2nd edition, 1982)
  35. O. Madelung. Festkorpertheorie I, II. (Springer-Verlag, Berlin, 1972)
  36. I.A. Kvasnikov. Teoriya ravnovesnykh sistem: Statisticheskaya fizika (Editorial URSS, M., 2002) (in Russian)
  37. A.I. Ahiezer, S.V. Peletminskiy. Metody statisticheskoi fiziki (Nauka, M., 1977) (in Russian)
  38. M.A. Leontovich. Vvedenie v termodinamiku, statisticheskaya fizika (Nauka, M., 1983) (in Russian)
  39. V.K. Ignatiev. ZhTF, 92 (1), 118 (2022) (in Russian). DOI: 10.21883/JTF.2022.01.51861.126-21
  40. L.D. Landau, E.M. Lifshitz. Quantum Mechanics, Non-Relativistic Theory, (Course of Theoretical Physics Volume 3) (Butterworth-Heinemann; 3nd edition, 1981)
  41. M.I. D'yakonov, V.I. Perel'. JETP Lett., 13 (11), 467 (1971)
  42. V.K. Ignatiev. ZhTF, 93 (5), 702 (2023) (in Russian). DOI: 10.21883/JTF.2023.05.55466.258-22
  43. M. Weiler, M. Althammer, M. Schreier, J. Lotze, M. Pernpeintner, S. Meyer, H. Huebl, R. Gross, A. Kamra, J. Xiao, Y.-T. Chen, H.J. Jiao, G.E.W. Bauer, S.T.B. Goennenwein. Phys. Rev. Lett., 111 (17), 176601 (2013). DOI: 10.1103/PhysRevLett.111.176601
  44. V.K. Ignatjev, S.V. Perchenko, D.A. Stankevich. Modern Phys. Lett. B, 38 (6), 2450018 (2024). DOI: 10.1142/S0217984924500180
  45. A.J. Francis, P.A. Salvador. J. Appl. Phys., 96 (5), 2482 (2004). DOI: 10.1063/1.1768609
  46. T.-Y. Hsieh, B.B. Prasad, G.-Y. Guo. Phys. Rev. B, 106 (16), 165102 (2022). DOI: 10.1103/PhysRevB.106.165102
  47. K. Shiota, A. Inui, Y. Hosaka, R. Amano, Y. \=Onuki, M. Hedo, T. Nakama, D. Hirobe, Jun-ichiro Ohe, Jun-ichiro Kishine, H.M. Yamamoto, H. Shishido, Y. Togawa. Phys. Rev. Lett., 127 (12), 126602 (2021). DOI: 10.1103/PhysRevLett.127.126602
  48. Yu. Kousaka, T. Sayo, S. Iwasaki, R. Saki, Ch. Shimada, H. Shishido, Y. Togawa. Jpn. J. Appl. Phys., 62 (1), 015506 (2023). DOI: 10.35848/1347-4065/aca8e2

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru