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Introduction

Spin Peltier Effect (SPE) that refers to the heat flux

generation caused by spin current was initially discovered

in magnetic dielectrics [1]. One of the grounds for the SPE

possibility was its mutuality with the Spin Seebeck Effect

(SSE) referring to the generation of spin current caused

by the temperature gradient and earlier found in magnetic

dielectrics [2]. In the study [1] the temperature gradient

caused by heat flux was registered by microthermocouples.

SSE and SPE mutuality ratios were qualitatively verified by

using numerical simulation.

We succeeded in significant improvement of spatial

resolution and the sensitivity threshold of the temperature

changes by means of the use of the local intensive ther-

mography (LIT) when studying SPE [3], in particular, the

mutuality ratios for it, which were justified analytically [4].
Further improvement of the resolution and sensitivity of lo-

cal thermography by passive thermorefraction [5–8] allowed
experimental verification of the mutuality ratio between SSE

and SPE in magnetic dielectrics [9].

It should be noted that SSE was initially discovered

in conductive ferromagnetic metals [10]. The authors

explained that effect by magnon and phonon degrees of

freedom [11]. The magnon theory was proposed also for

SPE in magnetic dielectrics [12,13]. The model of magnon

thermal conductivity based on the analysis of magnon-

phonon interaction within the Boltzmann theory allowed

to get a good correlation of the calculated and experimental

data on SSE and SPE in magnetic dielectrics [14]. There-

after, SSE was found in non-magnetic materials [15,16].
Theoretical model of SSE in paramagnetic dielectric was

experimentally confirmed [17]. SSE and SPE symmetry

justified experimentally by non-equilibrium Green’s function

and non-equilibrium thermodynamics [18] and confirmed

experimentally [9] allows to assume that SPE, the same as

SSE, is possible also in conductive magnetics, where spin

moment is carried by conductivity electrons [19].
Efficient use of the interaction between spin current and

heat flux is one of the main questions of the spin caloritron-

ics. New capabilities for it are opened by experimentally

found activation of SSE in non-magnetic materials by chiral

phonons flux [20]. In the authors’ opinion, chiral phonons

having the angle moment disturb the material symmetry and

enable the spin current generation in case of the temperature

gradient. Such symmetry disturbance exists without external

impacts in enantiopure crystals with helicoid chirality. At the

present time application of chiral media and waves is

considered as main area of the spintronics development [21].
Crystallographic chirality (according to terminology in [22])
can be accompanied by helimagnetic chirality, e.g. due

to Dzyaloshinski–Moriya interaction. These effects were

analyzed in the studies [23,24].
Experimentally studied SSE and SPE, generally, are

magnetic thermogalvanic. These are manifested in para-

magnetics in the external magnetic field or in magnetized

ferromagnetics. The magnetic induction vector or residual

magnetization defines the distinguished direction in isotropic

substance. In chiral structures such direction can define the

chirality axis. This is why materials with crystallographic

helicoid chirality can be perspective material for non-

magnetic spin caloritronics. For efficient control of large

heat fluxes the control component must not be a thin-film,

but massive one, therefore the SPE model in polycrystalline

chiral structures is of the interest.

Many inorganic materials have chiral crystalline struc-

tures. Chirality of crystalline materials is determined

by the symmetry of directions (symmetry of the second

nature) [25]. Of 32 crystallographic dotted groups only 11

(1, 2, 3, 4, 6, 222, 422, 32, 622, 23 and 432), where

no second nature symmetry operation (inversion, reflection,
rotoinversion and sliding reflection), are enantiomorphous.

These enantiomorphous dotted groups can define geometri-
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cally chiral classes of local symmetry of crystals. Integration

of Bravais lattices with enantiomorphous dotted groups

gives 65 space groups, which can form chiral crystalline

structures, these are called Sohncke groups [26].
However, only 22 out of Sohncke groups are enan-

tiomorphous space groups (11 enantiomosphous pairs)
may contain a helicoid structure [27]. This is why

inorganic crystalline materials having helicoid chirality in

atom arrangement are related to these enantiomorphous

space groups. In the rest of 43 groups the remote ordination

of atoms is basically achiral, but every asymmetrical unit has

local chirality and therefore it can also form chiral crystalline

structures. Inorganic crystalline materials having chiral

crystalline structure can easily create asymmetrical and

enantioselective surfaces, because chiral atom arrangement

continues on the surface [28]. Such crystalline faces

provide asymmetrical chemical reactivity of the material

and the possibility of biological recognition. For example,

asymmetrical adsorption of enantiomers of amino acids and

enantioselective catalysis with the use of quartz crystals

were noted [29].
3D structures of pure metals have no chiral properties,

except for manganese in β-modification [30]. In the

study [31] the example of pure aluminum shows that

formation of a distinguished direction in macroscopic metals

is possible in case of quenching the sample in presence of

deformation. Spirality is not round, but a broken line formed

by the ribs of the system planes 111. The study [32] gives
an overview of existing works on the synthesis of chiral

nanostructures based on precious metals. The basis for such

metamaterials are nanoparticles of metals manufactured,

e.g., by nanolithography. The experiments show efficiency of

synthesized chiral metamaterials in optics. The study [33],
where the method of production of self-organizing chiral

structures based on gold nanoparticles is presented, is

potentially applicable to the spintronics problems.

1. Spin Hamiltonian of a conductivity
electron in a helicoid-chiral metal

Let a crystallite with the volume of V contain

N nodes, each of which includes similar ions with effective

charge +Ze. Such a lattice creates an electric field

E(r) = − eZ
4πε0

N
∑

l=1

r− rl
∣

∣

∣
r− rl

∣

∣

∣

3
. (1)

The spin-orbital addition to the electron energy has the

form [34]:

V̂ =
~e

2m2c2

[

E(r) × p̂
]

ŝ. (2)

Here m — is the mass of an electron with charge — e.
Let us build effective Hamiltonian of the conductivity

electron for disturbance (2) in the field (1), by averaging the

operator (2) by coordinates of electron wave function, by

replacing variables r− rl → r and taking into consideration

that the moment operator commutates with any central

potential

V̂e = − ~
2e2Z

8πε0m2c2
ŝ
〈

ψ(r + rl)
∣

∣

∣

Î

r3

∣

∣

∣
ψ(r + rl)

〉

. (3)

Hereafter the summation by repeated indices is meant.

The wave function of the collectivized conductivity elec-

tron is written down in the form of the Vanier function [35]

ψ(r) =
1√
N

N
∑

n=1

9
(

r− Rn

)

exp
(

ikRn

)

, (4)

where 9(r) — is the atomic function of electron, Rn — is

the translation vector. Then

V̂e = − ~
2e2Z

8πε0m2c2N
ŝ
(

ik
(

Rn − Rm

))

×
〈

ψ
(

r + rl − Rm

)∣

∣

∣

Î

r3

∣

∣

∣
9

(

r + rl − Rn

)〉

. (5)

In the approximation of the nearest neighbors the quan-

tum mean in the right side (5) differs from zero only at

Rn − rk = 0 or aν and Rm − rk = 0 or aν , where aν — is

the vector drawn to the nearest neighbor.

V̂e = − ~
2e2Z

8πε0m2c2
ŝα

{

Re
〈

9

∣

∣

∣

l̂α
r3

∣

∣

∣
9

〉

+ 2 cos(kaν)

×Re
〈

9+
ν

∣

∣

∣

l̂α
r3

∣

∣

∣
9

〉

+ 2 sin(kaν)Im
〈

9−

ν

∣

∣

∣

l̂α
r3

∣

∣

∣
9

〉

}

.

Here 9±
ν (r) = 9(r + aν) ±9(r − aν).

Considering SPE only in metals, we will use the ap-

proximation of an ideal fermi gas for conductivity electrons.

The applicability of this model is justified by the fact that

the thermodynamics of a fermi system is determined by

its microscopic structure only near the Fermi surface [36].
Experimental studies of the temperature dependence of the

electron heat capacity in metals show that it corresponds

well to the model of an ideal fermi gas. At that, for the most

of metals effective mass of conductivity electron m∗ is close

to the mass of free electron. This is why k = −m∗j/(~ene),
where j — is the density of charge current, ne — is the

concentration of conductivity electrons.

In the first order of smallness by (jaν) we get

Ve =
~
2e2Z

8πε0m2c2
(−I0 − I1 + J)ŝ, (6)

I0 = Re
〈

9

∣

∣

∣

l̂

r3

∣

∣

∣
9

〉

, I1 = 2Re
〈

9+
ν

∣

∣

∣

l̂

r3

∣

∣

∣
9

〉

,

J =
2m∗

~ene
(jaν)Im

〈

9−

ν

∣

∣

∣

l̂

r3

∣

∣

∣
9

〉

. (7)

Here the summation in (7) and next by ν by pairs

of symmetrically arranged nearest neighbors is meant.
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In centrally symmetrical crystallite J = 0, since the function

9−
ν (r) has the parity, which is opposite to the parity of the

function 9(r).
Let us consider the crystallite with helicoid chirality. Its

crystalline lattice can be represented as a result of twisting

centrally symmetrical lattice around the chirality axis. Thus,

twisting transforms centrally symmetrical crystallite P3̄1m
into helicoid chiral one P6322.
Twisting along the chirality axis can be described by

axial vector �(r) = (rn)ωn. Here n — is the single

vector oriented along the chirality axis, ω — is the pseu-

doscalar, linear twisting. Twisting operations correspond

to transformation of coordinates r ′α = rα + uα(r), where

u(r) = [�(r) × r] = (rn)ω[n× r].
In coordinates transformation the wave function and the

moment operator in (7) are transformed according to the

law

dr ′α = drα +
∂uα
∂rβ

drβ,

drα =

(

δαβ +
∂uβ
∂rα

)−1

dr ′β ≈ dr ′α −
∂uα
∂rβ

dr ′β ,

p̂′

α = p̂α −
∂uβ
∂rα

p̂β,

l̂′α
εαβγ

~
r ′β p̂′

γ = l̂α +
εαβγ

~

(

uβ p̂γ − rβ
∂uδ
∂rγ

p̂δ − uβ
∂uδ
∂rγ

p̂δ

)

,

9(r′) = 9(r) +
∂9

∂rα

∂uα
∂rβ

rβ .

Here εαβγ — is the single antisymmetric Levi-Chivita

tensor. In the approximation, which is linear by ω we get

δrα = r ′α − rα = ωεαβγnβnδrγr δ ,

δ p̂α = p̂′

α − p̂α = −ωnσ (εβσαnδr δ + εβσ γnαrγ)p̂β ,

δ l̂α = l̂′α − l̂α = ωεαβγnβnδ(r δ l̂γ + rγ l̂δ),

δ9(r) = 9(r′) −9(r) = iωnβnδr δ l̂β9(r). (8)

δI0α′ =
2m∗ω

~ene
εα′β′γ′nβ′nδ′Re

〈

9

∣

∣

∣

rγ′ l̂δ′

r3

∣

∣

∣
9

〉

,

δI1α′ =
2m∗ω

~ene
εα′β′γ′nβ′nδ′Re

〈

9+
ν

∣

∣

∣

rγ′ l̂δ′

r3

∣

∣

∣
9

〉

,

δJα′ =
2m∗ω

~ene
εα′β′γ′nβ′nδ′ jσ ′aνσ ′Im

〈

9−

ν

∣

∣

∣

rγ′ l̂δ′

r3

∣

∣

∣
9

〉

. (9)

The value aνω in the formula (8) is the rotation angle of

its crystallographic plane perpendicular to the chirality axis

relative to the neighboring one. The operator in quantum

mean in the ratios (9) is odd, and the function 9+
ν (r) has

the parity which coincides the parity of the function 9(r).
Therefore δI0 = δI1 = 0.

In crystalline field (1) the position of axes, in which

the wave functions of electrons are written, is defined

by the position of crystallophysical axes. This is why

one can consider that the ratios (9) are recorded in the

coordinates system related with the crystallite axes. Let us

introduce a laboratory coordinate system associated with the

instruments that set the conductivity current and measure

the spin and energy flux components. The components

of vectors and tensors in the laboratory system will be

denoted by non-hatched indices, and the components of

vectors and tensors in the coordinate system associated with

the crystallophysical axes, — by hatched indices, as in the

formula (9). The vector n, the same as vectors aν , is set

in the system of crystallophysical axes, and the vector j, the

same as the vector s, in the formula (6) — is set in the

laboratory system.

Let us transform the current density vector from the

laboratory system into the system of crystallophysical axes

jσ ′ = pσ ′σ jσ , and the vectors I and J from the system of

crystalline axes — into the laboratory system Jα = p−1
αα′Jα′

where pα′α — is the unitary rotation matrix. Let us

put that transformation into the equation (6) and average

the vectors I and J in microscopic region by random

orientations of crystallites. The rotation matrix is convenient

to express through Euler angles. Then the averaging in

macroscopically isotropic region is limited to the averaging

by random uniformly distributed Euler angles. Wherein

the quantum mean in the formula (8) is the scalar, which

depends only on the crystal properties, can be derived in the

system of crystallophysical axes and is not changed when

averaging by random orientations of crystallites.

l̄0 = l̄1 = 0, δJ = Jh = j
m∗ω

3~ene
Im

〈

9−

ν

∣

∣

∣
aν

⌊r× l̂⌋
r3

∣

∣

∣
9

〉

.

(10)
Here, the index h denotes contribution caused by helicoid

chirality of the medium.

2. Effective spin-phonon Hamiltonian

Let the harmonic wave with the wave vector

K and the frequency of �(K) as u(t, r) = a(t, r) +
+a∗(t, r), a(t, r) = ea exp(i�t − iKr) propagates along

the vector e in the crystallite with helicoid chirality. For

the deformation created by that wave, in a similar way to

the ratios (8), we get

δ l̂α =l̂′α − l̂α = εαβγ

((

aβ + a∗

β

)

p̂γ

+iKγ

(

rβ + aβ + a∗

β

)(

aδ − a∗

δ

)

p̂δ
)

.

Considering that the pulse operator is imaginary, we get

δ l̂ = δ1 l̂− δ1 l̂
∗ + δ2 l̂− δ2 l̂

∗ + δ3 l̂− δ3 l̂
∗,

δ1 l̂ = a exp
(

i�t − iKr
){

[e× p̂] + i[r×K](ep̂)
}

,

δ2 l̂ = −ia∗a(ep̂)[e×K],

δ3 l̂ = ia2 exp(i2�t − i2Kr)(ep̂)[e×K].
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Here, the component δ2 l̂ is not explicitly dependent on

the time and coordinates. The same

ψ′ − ψ =
∂uα
∂rβ

rβ
∂ψ

∂rα
= δψ + δψ∗,

δψ =
a
~
exp(i�t − iKr)(Kr)(ep̂)ψ.

For the components of each member of the sum not

explicitly dependent on the time in (3) we get

A =
〈

ψ′

∣

∣

∣

l̂

r3

∣

∣

∣
ψ′

〉

−
〈

ψ

∣

∣

∣

l̂

r3

∣

∣

∣
ψ
〉

=
〈

ψ

∣

∣

∣

δ2 l̂− δ2 l̂
∗

r3

∣

∣

∣
ψ
〉

+
〈

δψ

∣

∣

∣

l̂

r3

∣

∣

∣
δψ

〉

+
〈

δψ∗

∣

∣

∣

l̂

r3

∣

∣

∣
δψ∗

〉

+
〈

δψ

∣

∣

∣

δ1 l̂

r3

∣

∣

∣
ψ
〉

−
〈

δψ∗

∣

∣

∣

δ1l̂
∗

r3

∣

∣

∣
ψ
〉

+
〈

ψ

∣

∣

∣

δ1 l̂

r3

∣

∣

∣
δψ∗

〉

−
〈

ψ

∣

∣

∣

δ1 l̂
∗

r3

∣

∣

∣
δψ

〉

+
〈

δψ

∣

∣

∣

δ3 l̂

r3

∣

∣

∣
δψ∗

〉

−
〈

δψ∗

∣

∣

∣

δ3l̂
∗

r3

∣

∣

∣
δψ

〉

.

To build effective spin-phonon Hamiltonian in repre-

sentation of the secondary quantization let us replace

a → âK

√

~

2wV� , a∗ → â+
K

√

~

2wV� , where w — is the

body density, V — is its volume and, subject to the commu-

tation rules [â, â+] = 1, let us distinguish the components,

which are proportional to the density operator of the phonon

number with the wave vector K ĉK = â+
KâK/V , and build

the operator

ÂK =
ĉK

2~�w
(ep̂)(Kr)

l̂

r3
(Kr)(ep̂).

For the ensemble of equilibrium thermal phonons let us

average that operator by random orientations of vectors K

and e:

〈

ÂK

〉

=
〈ĉK〉
2~�w

〈

eαeγ
〉〈

KβKδ

〉

p̂αrβ
l̂

r3
r δ p̂γ .

If in macroscopically isotropic medium all directions of

vectors K and e are equally probable and independent, then

〈eαeγ〉 = δαγ/3 , 〈KβKδ〉 = δβδK2/3 In isotropic medium

one can consider the phonon frequency � as unambiguous

monotone function of the modulus of its wave number and

put K = �/ν�, where ν� — is the phase speed of the

phonon, 〈ĉk〉 = ĉ�. Then, subject to commutation ratios

between the operators of coordinates, pulse and moment

components, we get

〈

ÂK

〉

= Â� =
ĥ�

18~2wν2�
p̂αrβ

l̂

r3
rβ p̂α. (11)

Here ~̂ω = ~�ĉ� — is the density operator of Hamiltonian

of the phonons with the frequency of �.

In harmonic approximation the phonons do not interact.

We will treat interaction of phonons conditioned by an-

harmonicity as one of possible mechanisms of relaxation.

Then we can introduce the density operator of undisturbed

Hamiltonian of the system of phonons as the sum of Hamil-

tonians of subensembles of phonons with the frequency

of �: ~̂0p =
∑

�

~̂�, where summation is performed for all

frequencies of the phonon spectrum. Let us introduce the

average in terms of phonon spectrum phase speed ν . Then,

from (11) we get

ÂK =
∑

�

Â� =
ĥ0p

18~2wν2�
p̂αrβ

l̂

r3
rβ p̂α. (12)

Formulas (9) for the deformation of centrally symmetrical

crystallite, which is caused only be phonons, will be

δl0 =
m∗

~ene
Re

〈

9

∣

∣

∣
Â

∣

∣

∣
9

〉

, δ1 =
2m∗

~ene
Re

〈

9+
ν

∣

∣

∣
Â

∣

∣

∣
9

〉

,

δJ =
2m∗(jaν)

~ene
Im

〈

9−

ν

∣

∣

∣
Â

∣

∣

∣
9

〉

. (13)

Since the operator (12) is even, δl0 6= 0 and δl1 6= 0, but

when averaging by random orientations of crystals we get

δl0 = δl1 = 0. In case of deformation conditioned only by

phonons δJ = 0. If a phonon propagates in helicoid chiral

medium, then the last formula (13) turns into

δJ =
2m∗(jaν)

~ene
Im

{〈

9−

ν

∣

∣

∣
δÂ

∣

∣

∣
9

〉

+
〈

δ9−

ν

∣

∣

∣
Â

∣

∣

∣
9

〉

+
〈

9−

ν

∣

∣

∣
Â

∣

∣

∣
δ9

〉}

=
m∗ω jσ ′aνσ ′ ĥ0

9wν2~3ene
Im

{〈

9−

ν

∣

∣

∣
B̂

∣

∣

∣
9

〉}

,

δÂ =
ĥ0/~

2

18wν2

{

p̂αrβ
δ l̂

r3
rβ p̂α + δ p̂αrβ

l̂

r3
rβ p̂α+

+p̂αrβ
l̂

r3
rβδ p̂α + p̂αδrβ

l̂

r3
rβ p̂α + p̂αrβ

l̂

r3
δrβ p̂α

}

.

(14)

B̂α′ = εα′β′γ′nβ′nδ′ p̂µ′rχ
r δ′ l̂γ′ + rγ′ l̂δ′

r3
rχ′ p̂µ′

+εχ′β′γnβ′nδ′ p̂µ′rγ

(

r δ′
l̂α′

r3
rχ′ p̂µ′ +

l̂α′

r3
rχ′r δ′ p̂µ′

)

−nη′
(

εβ′η′µ′nδ′r δ′ + εβ′η′γ′nµ′rγ′
)

p̂β′rχ′
l̂α′

r3
rχ′ p̂µ′

−nη′ p̂µ′rχ′
l̂α′

r3
rχ′

(

εβ′η′µ′nδ′r δ′ + εβ′η′γ′nµ′rγ′
)

p̂β′

+inβ′nδ′r δ′
(

p̂µ′rχ′
l̂α′

r3
rχ′ p̂µ′ l̂β′− l̂β′ p̂µ′rχ′

l̂α′

r3
rχ′ p̂µ′

)

.

(15)
By substituting the expression (15) in the right side of the

formula (14) and by averaging it by random orientations

of crystallites, we obtain that the averaged vector δJ is

proportional to the density vector of the charge current.

The coefficient of proportionality has a quite cumbersome

Technical Physics, 2024, Vol. 69, No. 4



Model of the Peltier spin effect in nonmagnetic chiral conductors 501

structure. By limiting only to the contribution from the first

member of sum in the formula (15), we get

δJ =Jph =
m∗ωĥ0P

27~3enewν2
jIm

〈

9−

ν

∣

∣

∣
p̂αrβaν

×
{

(nr)

[

n× l̂

r3

]

+ [n× r]

(

n
l̂

r3

)}

rβ p̂α
∣

∣

∣
9

〉

. (16)

Here, the index ph denotes contribution caused by

phonons propagating in chiral medium.

Let us substitute formulas (10) and (16) in the equa-

tion (6). To analyze the spin subsystem dynamics we build

efficient spin Hamiltonian, by averaging the ratio (6) by

variables of the phonon subsystem:

V̂S = (jŝ)(DS + DPh0P),

DS =
~eZm∗ω

24πε0m2c2ne
Im

〈

9−

ν

∣

∣

∣
aν

⌊r× l̂⌋
r3

∣

∣

∣
9

〉

,

DP =
eZm∗ω

216πε0~m2c2newν2
Im

〈

9−

ν

∣

∣

∣
p̂αrβaν

×
{

(nr)

[

n× l̂

r3

]

+ [n× r]

(

n
l̂

r3

)}

rβ p̂α
∣

∣

∣
9

〉

. (17)

Accordingly, for description of the dynamics of the

phonon subsystem we build efficient phonon Hamiltonian,

by averaging (6) by variables of the spin subsystem:

V̂P = DP(js)ĥ0P . (18)

The ratios (17) and (18) are written for one electron

interacting with the system of phonons. Let us distinguish a

physically small volume with the center in the point with the

coordinate r, containing sufficient number of conductivity

electrons, within which the conductivity current density,

the phonons density and other parameters of formulas (17)
and (18) can be considered as constant, and introduce the

densities of spin moment ŝ(r, t), undisturbed Hamiltonian

of electrons ĥ0S(t, r), effective spin perturbation ûS(r, t) and
effective phonon perturbation ûP(t, r) so that

Ŝ(t) =

∫

V

ŝ(t, r)d3r,

V̂S(t) =

∫

V

ûS(t, r)d
3r, V̂P(t) =

∫

V

ûP(t, r)d3r,

Ĥ0P(t) =

∫

V

ĥ0P(t, r)d3r, Ĥ0S(t) =

∫

V

ĥ0S(t, r)d
3r. (19)

Here Ŝ(t) — is the operator of total spin of conductivity

electrons, Ĥ0P(t) and Ĥ0S(t) — are undisturbed Hamiltoni-

ans of phonons and electrons in the volume V , accordingly.

Density operators of phonon Hamiltonian ĥP(t, r) and

spin moment ŝ(r, t) in representation of interaction satisfy

the ratios [37]

∂ ĥP(t, r)
∂t

= −divq̂(t, r),

i~
∂ ŝα(t, r)

∂t
=

[

Ŝα(t), ĥ0S(t, r)
]

− i~
∂υ̂αβ(t, r)

∂rβ
,

α, β = 1, 2, 3, (20)

where q̂(t, r) is the density operator of the flux of phonons

Hamiltonian, υ̂αβ(t, r) — are the operator components

of pseudotensor of the spin current density. From the

formulas (18) and (19) for the phonons Hamiltonian we

get

ĤP(t) = Ĥ0P + V0P(t) =

∫

V

ĥP(t, r)d3r,

ĥP(t, r) = ĥ0P(t, r)
{

1 + DP(j(t, r)s(t, r))
}

. (21)

3. Locally quasi-equilibrium distribution

Application of Boltzmann theory allowed to obtain a

good correlation of the calculated and experimental data

for SSE and SPE in magnetic dielectrics [14]. Quantum

generalization of such approach is the concept of locally

quasi-equilibrium distribution of the density operator [38].
In absence of fluxes, locally quasi-equilibrium distribution

with the density operator is established in the phonon

subsystem

ρ̂
q
P(t) = exp

{

− 8(t) −
∫

V

θ(t, r)ĥP(r, t)d3r

}

,

8(t) = ln Sp exp

{

−
∫

V

θ(t, r)ĥP(t, r)d3r

}

. (22)

Here 8(t) — is the functionality of Massier-Planck,

θ(t, r) = 1/(kB T (t, r)), kB — is the Boltzmann constant,

T (t, r) — is the local temperature.

We will consider that in absence of fluxes the distribu-

tion (22) is established in the phonon subsystem. In phonon

subsystem brought out of the locally quasi-equilibrium

state (22) into the state with density operator ρ̂P(t), the

energy flux occurs with density

q(t, r) = Sp(q̂(t, r)ρ̂P(t)) = qmn(t, r)ρPnm(t). (23)

Hereinafter the matrix elements of operators are derived

in the basis of eigen functions of undisturbed phonon

Hamiltonian Ĥ0P and the summation by repeated indices is

implied. The energy flux (23) is one of the mechanisms of

the system relaxation to locally quasi-equilibrium state (22).
In the approximation of Markov’s relaxation the density

operator dynamics can be described by using the equation

∂ρPnm(t)
∂t

=
ρ

q
Pnm(t) − ρPnm(t)

τnm
,

which is equivalent to integral equation

ρPnm(t) =
(

ρ0Pnm + ρ
q
Pnm(t)

)

exp

(

t0 − t
τnm

)

− ρ
q
Pnm(t)

+

t
∫

t0

exp

(

t − t′

τnm

)

dρq
Pnm(t′)
dt′

dt′. (24)
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Here τnm = τmn — are real positive times of relaxation,

and, it is adopted that at the moment of time t0 the system

was in quasi-equilibrium state with the density operator ρ̂0P .

It follows from the equations (20)−(22) that for steady-

state distribution of local temperature, density of charge

current and spin polarization

dρ̂q
P(t)
dt

= −ρ̂q
P(t)

∫

V

q̂α(t, r)
∂

∂rα
{θ(r)

+ DPθ(r)(j(r)s(r))}d3r +

∫

6

q̂α(r, t)θ(r)

× {1 + DP(j(r)s(r))}d6. (25)

Here 6 — is the surface limiting the body V . If the

surface 6 is isothermal and no heat emission inside the

body, the second member of sum in the right part (25) is

equal to zero.

Let moment of time t0 in the formula (24) tend to −∞,

then the first member of sum on the right-hand side is zero.

Let us introduce a new variable τ = t − t′ . Subject to the

formula (25) the equation (18) will be

ρPnm(t) = −ρq
Pnm(t)−

−
∫

V

∞
∫

0

exp

(−τ
τnm

)

(

ρ
q
Pnl(t − τ )qαlm(r′, t − τ )

)

dτ

× ∂

∂r ′α

{

θ(r′) + Dpθ(r
′)((j(r′)s(r′))

}

d3r ′. (26)

Considering that there are no fluxes in quasi-equilibrium

state, from the formulas (23) and (26) we get

qα(t, r)=
∫

V

∞
∫

0

exp

(−τ
τnm

)

ρ
q
Pnl(t−τ )qαmn(t, r)qβlm(t−τ, r′)dτ

× ∂

∂r ′α

{

Dpθ(r
′)((j(r′)s(r′)) + θ(r′)

}

d3r ′.

(27)
Quasi-equilibrium distribution is a quasi-steady-state, this

is why we can ignore the change of matrix elements

of quasi-equilibrium density operator for typical time of

relaxation of non-equilibrium operator. If the typical scale

of space correlation of ensemble of non-interacting thermal

phonons is small versus the distance, at which the gradient

in the subintegral expression (27) changes, we may assume

ρ
q
Pnl(t − τ )qαmn(t, r)qβlm(t − τ , r′)

=Sp
{

ρ̂
q
P q̂α(t, r)q̂β(t − τ , r′)

}

=
〈

q̂α(t, r)q̂β(t − τ , r′)
〉q

=
〈

q̂(t, r)q̂(t − τ , r)
〉q
δ(r− r′)δαβ/3.

Then the formula (27) takes the form

q(t, r) =
1

3kBT 2(t, r)

∞
∫

0

exp

(−τ
τnm

)

ρ
q
Pnl(t − τ)qαmn(t, r)

×qαlm(r, t − τ)dτ
∂T (t, r)
∂r

+
DP

3kB

∞
∫

0

exp

(−τ
τnm

)

ρ
q
Pnl

×(t − τ)qαmn(t, r)qαlm(t − τ, r)dτ
∂

∂r

j(t, r)s(t, r)
T (t, r)

.

(28)
If no charge current flows through the body, then the

second member of sum in the equation (28) is equal to zero,

and the first one describes the lattice thermal conductivity

with the coefficient

Wl = − 1

3kBT 2(t, r)

∞
∫

0

exp

(−τ
τnm

)

ρ
q
Pnl(t − τ)qαmn(t, r)

×qαlm(t − τ , r)dτ .

If there is spin current, then the second member of sum

in (28) describes the thermal flux caused by spin-phonon

interaction

qSP(t, r) = − DPW1T (t, r)
∂

∂r

{

j(t, r)s(t, r)
}

+DPW1

{

j(t, r)s(t, r)
} ∂T (t, r)

∂r
. (29)

The first member on the right-hand side of the for-

mula (29) describes SPE — thermal flow created by spin

current in absence of the temperature gradient. The same

as for Electron Peltier Effect this flux is proportional to the

temperature. The second member of sum describes the

impact of spin current on thermal conductivity similarly to

the Righi&ndash;Leduc effect describing the magnetic field

impact on thermal conductivity.

4. Dynamics of spin polarization and
heat flux

In representation of secondary quantization

ĥ0S(t, r) = − ~
2

2m
ψ̂+
σ (t, r)1ψ̂σ (t, r),

ŝ(t, r) = ψ̂+
σ (t, r)sσσ ′ ψ̂σ ′(t, r). (30)

Here ψ̂σ (t, r) — is the field operator of electron, σ — is

the spin variable, sσσ ′ — is the spin matrix. Commutation

relations for field operators of electrons can be written

as ψ̂σ ′(t, r′)ψ̂+
σ (t, r) + ψ̂+

σ (t, r)ψ̂σ ′(t, r′) = δ(r− r′)δσσ ′ .

Other anticommutators are equal to zero. Moreover,

ψ̂+
σ ′(t, r′)1rψ̂σ (t, r) = 1r

(

ψ̂+
σ ′(t, r′)ψ̂σ (t, r)

)

. Then, subject
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to the ratios (19) and (30)
[

Ŝα(t), ĥ0S(t, r)
]

= 0, the

second equation (20) also turns to continuity equation

∂ ŝα(t, r)
∂t

= −∂υ̂αβ(t, r)
∂rβ

. (31)

The components of the operator of the pseudotensor of

density of spin current are [39]

υ̂αβ(t, r) = − i~
2m

(

ψ̂+
σ (t, r)sασσ ′

∂

∂rβ
ψ̂σ ′(t, r)

− ∂

∂rβ
ψ̂+
σ (t, r)sασσ ′ ψ̂σ ′(t, r)

)

. (32)

The equation of dynamics of the operator of pseudotensor

of the spin current density (32) in representation of

interaction [40] subject to ratios (19) and (30) is

i~
∂υ̂αβ(t, r)

∂t
=

[

υ̂αβ(t, r), Ĥ0S

]

=

∫

V

[

υ̂αβ(t, r), ĥ0S(t, r
′)
]

d3r ′ = 0, (33)

i.e. in the representation of interaction the operator of

pseudotensor of density of spin current is not explicitly

dependent on time.

The equations of dynamics of average

components of the spin moment density

sα(t, r) = 〈ŝα(t, r)〉 = Sp
(

ŝα(t, r)ρ̂s

)

and tensor of spin

current density υαβ(t, r) = 〈υ̂αβ(t, r)〉 = Sp
(

υ̂αβ(t, r)ρ̂s

)

subject to equations (31) and (32) are

∂sα(t, r)
∂t

= Sp

(

ŝα(t, r)
dρ̂s

dt

)

− ∂υαβ(t, r)
∂rβ

,

∂υαβ(t, r)

∂t
= Sp

(

υ̂αβ(r)
dρ̂s

dt

)

, (34)

where ρ̂s — is the density operator of spin subsystem.

In the approximation of Markov’s relaxation, Neumann

equation for the matrix of density of spin subsystem is

dρSmn

dt
= −ρSmn − ρe

Smn

τmn
− i

~

[

V̂s , ρ̂s

]

mn
, (35)

where ρe
Smn — are the matrix elements of equilibrium

density operator of spin subsystem, τmn — are the relaxation

times.

Let us assume that when calculating the first member

of sum on the right-hand side of the equation (35) we

can replace the relaxation times with an averaged value τr .

Then the equations of spin dynamics (34) subject to

rearrangement of operators under diagonal sum will be

∂sα(t, r)
∂t

= − sα(t, r) − se
α(t, r)

τr
− i

~

×
∫

V

Sp
(

ρ̂s

[

ŝα(t, r), ûs(t, r
′)
])

d3r ′ − ∂υαβ(t, r)
∂rβ

, (36)

∂υαβ(t, r)
∂t

= −
υαβ(t, r) − υe

αβ(t, r)

τr

− i
~

∫

V

Sp
(

ρ̂s

[

υ̂αβ(t, r), ûs(t, r
′)
])

d3r ′. (37)

Here,

se
α(t, r) = Sp

(

ŝα(t, r)ρ̂
e
s

)

, υe
αβ(t, r) = Sp

(

υ̂αβ(t, r)ρ̂
e
s

)

equilibrium components of density of spin moment and

pseudotensor of density of spin current, accordingly.

In steady-state equilibrium state, in a first approximation we

can assume that there is no pure spin current. Within the

framework of Dyakonov-Perel model [41] it implies that

the effects of spin diffusion and spin-orbit interaction

compensate each other, and υe
αβ(t, r) = − s e

α(t,r) jβ(t,r)
ene(t,r)

can

be accepted. Here ne(t, r) =
〈

ψ̂+
σ (t, r)ψ̂σ (t, r)

〉

— is the

concentration of conductivity electrons, whose energy is

within the interval of the order kBT near to Fermi level.

Effective spin Hamiltonian V̂S in the first equation (17) —
is a single-particle operator, its density is derived by a stan-

dard method [37]: ûS(t, r) = (jŝ(t, r))(DS + DPh0P(t, r)).
Let us assume h0P = c lT , where c l — is a specific

volumetric lattice thermal capacity averaged by the temper-

ature interval. By calculating relevant commutators in the

equations (36) and (37), we get

∂sα(t, r)
∂t

= − sα(t, r) − se
α(t, r)

τr

+
εαβγ (DS + c lDPT (t, r)) jβ(t, r)sγ(t, r)

~

− ∂υαβ(t, r)
∂rβ

, (38)

∂υαβ(t, r)
∂t

=
se
α(t, r) jβ(t, r) − ene(t, r)υαβ(t, r)

ene(t, r)τr

+
ne(t, r)
4m

∂

∂rβ

(

(

DS + c lDPT (t, r)
)

jα(t, r)

)

. (39)

By averaging the perturbation (17) by quantum state,

we will get that the energy of states, when average

spin is oriented parallel or antiparallel to the vector j, is

± j(DS + DPh0P)/2, accordingly. Then, at the temperature

of T :

se(t, r) =
j(t, r)ne(t, r)
2|j(t, r)| th

(

|j(t, r)|DS + DPc lT
2kB T

)

. (40)

The second member of sum on the right-hand side (38)
describes precession of spin moment around the vector of

density of charge current. The only distinguished direction

is caused by isotropic behavior of polycrystalline model

with random orientations of chirality axes of crystallites.

There is the second distinguished direction for single-crystal

sample — chirality axis, and this member of sum has
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more complicated structure. If spin polarization is parallel

to the current density, then the precession member of

sum disappears. If the equilibrium spin polarization (40)
can be ignored, then the equation (38) coincides the first

equation of Dyakonov-Perel [41]. However, subject to

spin-phonon interaction phenomenological relation of spin

and electric current is dynamic and is described not by

the second equation of Dyakonov-Perel, but the system of

equations (38)−(40).

Quasi-steady-state distribution of current density in ho-

mogeneous isotropic conductor with the conductivity σ ,

constrained by closed surface 6, is the solution for internal

Neumann problem.

j = −σ ∂ϕ
∂r
, 1ϕ = 0,

∂ϕ

∂n

∣

∣

∣

∣

6

= − jn(r ∈ 6)

σ
,

{

6

jd6 = 0.

(41)

The equation (41) has single solution and jointly with the

equations (29), (38), (39) and (40) unambiguously defines

the dynamics of distribution of spin polarization, spin

current and heat flux at specified dynamics of distribution

of normal component of current density over the conductor

surface.

Let us consider homogeneous semi-space x ≥ 0, on

which homogeneously distributed charge current with the

density of jx = − j is flowing towards axis x. Then,

in steady-state mode the equation (38) for longitudinal

component of density of spin moment of conductivity

electrons turns to

dsx

dx
+

ene

jτr
sx =

en2
e

2 jτr
th

(

j
DS + DPc lT

2kBT

)

. (42)

Solution of equation (42) with boundary condition

sx (0) = 0 is

sx (x) =
ne

2
th

(

j
DS + DPc lT

2kBT

){

exp

(

− ene

jτr
x

)

− 1

}

.

Accordingly

∂

∂r

{

j(r)s(r)
}

= − j
dsx

dx
=

en2
e

2τr
th

(

j
DS + DPc lT

2kBT

)

× exp

(

− ene

jτr
x

)

.

Then, from the equation (29) we get

qx (x) = −DPWlT
en2

e

2τr
th

(

j
DS + DPc lT

2kBT

)

exp

(

− ene

jτr
x

)

.

(43)
According to the equation (43), |q| ≤ en2

eDpWlT/(2τr ).
Wherein heat flux generated by spin current depends on the

temperature, but not on its gradient. It corresponds to the

general conclusion [42]. If Dpc lT ≫ Ds , then we get that

in linear mode with j ≪ j p = kB/(Dpc l) at the distance of

x ≪ lp = jτr/(ene) from the conductor surface the thermal

flux is proportional to the charge current density

q = −
en2

eD2
pWlT

4τr kB
j .

Conclusion

According to the solution (43), if non-polarized charge

current flows into a non-magnetic helicoid-chiral polycrys-

talline conductor with heavy spin-orbit interaction, then

the maximum longitudinal spin polarization is reached at

the distance of about lp from the surface. The heat

fluxes control by means of spin current described by the

equation (29), was experimentally demonstrated in the

study [43].
SPE analysis in non-magnetic helicoid-chiral conductors

was performed by using the model of ideal Fermi gas for

conductivity electrons in metals and representation of their

wave function as the Vanier function, approximation of the

nearest neighbors in Hamiltonian (5) and the model of

isotropic polycrystalline conductor with random orientations

of crystallites. The applicability of these models for a

specific task should be justified experimentally. Reliable

experimental data on the spin Hall effect in metals are cur-

rently available. Therefore, the coefficients of the spin Hall

effect of 19 non-magnetic metals of the 3th−6th periods

were calculated using the described approximations [44].
The results of the calculations are consistent with the

experimental ones within the margin of error.

In the metals with a high value of spin-Hall specific

conductivity, e.g., in platinum, no crystallographic helicoidity

was found. Therefore, the promising and relevant area for

spin caloritronics is formation of metallic chiral surfaces

on the structural substrates [28]. In the study [45] it

was demonstrated that deposition of platinum and copper

onto strontium titanate substrate (621) allows producing

films completed with low-symmetrical chiral surface with

a high Miller index. Such demonstration of homochiral

heteroepitaxial growth has shown that deposition of metals

onto chiral minerals, such as quartz, even as particles, can

be used for production of chiral metals in morphology with

a large surface area. The surfaces of produced films have

no helicoidal symmetry, but have a distinguished direction

laying in the film plane.

Compounds of transition metals with crystalline non-

centrally symmetrical structure manifest non-trivial electrical

and magnetic properties, a part of which has been discov-

ered for the recent time. The study [24] has shown that CoSi

is a non-magnetic semi-metal crystallizing in chiral structure

B20, whose space group P213 does not contain the inversion

center. The study [46] demonstrated that semi-metal CoGe,

RhSi and RhGe alloys also have chiral crystalline structure

B20. Wherein a high value of spin-Hall specific conductivity

and helicoidity of chiral structure are correlated.

It can be expected that the optimum material for

achievement of macroscopic coherency of spin currents
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and their effective interaction with intensive fluxes of heat

can be binary conductors with chiral helicoidal structure,

whose crystalline lattice belongs to space groups of the

symmetry P6122, P6222, P6422, P6522 [30,47], such as,

WAl2 [30]. Metal shall be transition one from the 6th

period or a lanthanide with heavy spin-orbit interaction.

The compound in terms of its magnetic properties must

be antiferromagnetic, helimagnetic or ferrimagnetic. So, in

the study [48] with the combination of TaSi2 and NbSi2
materials, the length of spin coherency of 60mm was

reached.
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