Formation of an argon plasma jet fed by bunches of bipolar high-voltage pulses
Pinchuk M. E. 1, Stepanova O. M. 1
1Institute for Electrophysics and Electric Power, Russian Academy of Sciences, St. Petersburg, Russia
Email: pinchme@mail.ru, olga.stepanova707@gmail.com

PDF
An argon plasma jet, which is formed in an ambient air at the output of a quartz tube by a dielectric-barrier discharge with an electrode system consisting of central rod and outer ring electrodes and fed by an applied voltage generated as bipolar pulses bunches of variable duration, has been studied. The reproducible from bunch to bunch dynamics of propagation of guided streamers forming a plasma jet was observed. An increase in the distance traveled by each subsequent streamer compared to the previous one in each subsequent positive pulse in the bunch has been recorded. The streamer imaging was carried out in the presence of a dielectric target; the jet approaching to the target surface up to its contact has been registered. The nature of the jet propagation to the target has been shown to be controlled by changing the duration of the bunches and the time between them. Keywords: argon atmospheric pressure plasma jet, guided streamer, control of streamer propagation dynamics, dielectric barrier discharge.
  1. Yu.S. Akishev, Izv. vuzov. Khimiya i khim. tekhnologiya, (in Russian) 62 (8), 26 (2019). DOI: 10.6060/ivkkt.20196208.5908
  2. I. Adamovich, S. Agarwal, E. Ahedo, L.L. Alves, S. Baalrud, N. Babaeva, A. Bogaerts, A. Bourdon, P.J. Bruggeman, C. Canal, E.H. Choi, S. Coulombe, Z. Donko, D.B. Graves, S. Hamaguchi, D. Hegemann, M. Hori, H.-H. Kim, G.M.W. Kroesen, M.J. Kushner, A. Laricchiuta, X. Li, T.E. Magin, S. Mededovic Thagard, V. Miller, A.B. Murphy, G.S. Oehrlein, N. Puac, R.M. Sankaran, S. Samukawa, M. Shiratani, M. vSimek, N. Tarasenko, K. Terashima, E. Thomas, Jr., J. Trieschmann, S. Tsikata, M.M. Turner, I.J. van der Walt, M.C.M. van de Sanden, T. von Woedtke, J. Phys. D: Appl. Phys., 55, 373001 (2022). DOI: 10.1088/1361-6463/ac5e1c
  3. H.-R. Metelmann, T. von Woedtke, K.-D. Weltmann, Comprehensive clinical plasma medicine, 1st ed. (Springer International Publ., 2018). DOI: 10.1007/978-3-319-67627-2
  4. M. Teschke, J. Kedzierski, E.G. Finantu-Dinu, D. Korzec, J. Engemann, IEEE Trans. Plasma Sci., 33, 310 (2005). DOI: 10.1109/TPS.2005.845377
  5. X. Lu, G.V. Naidis, M. Laroussi, K. Ostrikov, Phys. Rep., 540, 123 (2014). DOI: 10.1016/j.physrep.2014.02.006
  6. Yu.S. Akishev, V.B. Karalnik, M.A. Medvedev, A.V. Petryakov, N.I. Trushkin, A.G. Shafikov, J. Phys.: Conf. Ser., 927, 012051 (2017). DOI: 10.1088/1742-6596/927/1/012051
  7. L. Lin, Z. Hou, X. Yao, Y. Liu, J.R. Sirigiri, T. Lee, M. Keidar, Phys. Plasmas, 27, 063501 (2020). DOI: 10.1063/5.0003528
  8. S.A. Norberg, G.M. Parsey, A.M. Lietz, E. Johnsen, M.J. Kushner, J. Phys. D: Appl. Phys., 52, 015201 (2018). DOI: 10.1088/1361-6463/aae41e
  9. M. Pinchuk, A. Nikiforov, V. Snetov, Z. Chen, C. Leys, O. Stepanova, Sci. Rep., 11, 17286 (2021). DOI: 10.1038/s41598-021-96468-4
  10. M.E. Pinchuk, G.B. Sretenovic, N. Cvetanovic, A.A. Dyachenko, B.M. Obradovic, O.M. Stepanova, Eur. Phys. J. D, 77, 106 (2023). DOI: 10.1140/epjd/s10053-023-00686-6
  11. M.E. Pinchuk, O.M. Stepanova, M. Gromov, A. Nikiforov, Publ. of the Astronomical Observatory of Belgrade, 102, 163 (2022). http://hdl.handle.net/1854/LU-8767628
  12. M. Pinchuk, O. Stepanova, N. Kurakina, V. Spodobin, J. Phys.: Conf. Ser., 830, 012060 (2017). DOI: 10.1088/1742-6596/830/1/012060
  13. O. Stepanova, M. Pinchuk, A. Astafiev, Z. Chen, Jpn. J. Appl. Phys., 59, SHHC03 (2020). DOI: 10.35848/1347-4065/ab75b4
  14. M.E. Pinchuk, Z. Chen, O.M. Stepanova, Appl. Phys. Lett., 119, 054103 (2021). DOI: 10.1063/5.0053672
  15. D.A. Malik, K.E. Orlov, I.V. Miroshnikov, A.S. Smirnov, Tech. Phys. Lett., 31 (6), 500 (2005). DOI: 10.1134/1.1969779
  16. S. Hofmann, A. Sobota, P. Bruggeman, IEEE Trans. Plasma Sci., 40, 2888 (2012). DOI: 10.1109/tps.2012.2211621
  17. T. Darny, J.-M. Pouvesle, J. Fontane, L. Joly, S. Dozias, E. Robert, Plasma Sources Sci. Technol., 26, 105001 (2017). DOI: 10.1088/1361-6595/aa8877
  18. N.Y. Babaeva, G.V. Naidis, V.F. Tarasenko, D.A. Sorokin, C. Zhang, T. Shao, Plasma Sci. Technol., 25, 035406 (2023). DOI: 10.1088/2058-6272/aca18e
  19. E.M. Bazelyan, Yu.P. Raizer. Fizika molnii i molniezaschity (Fizmatlit, M., 2001). (in Russian)
  20. P. Viegas, E. Slikboer, Z. Bonaventura, O. Guaitella, A. Sobota, A. Bourdon, Plasma Sources Sci. Technol., 31, 053001 (2022). DOI: 10.1088/1361-6595/ac61a9
  21. I.V. Schweigert, A.L. Alexandrov, D.E. Zakrevsky, Plasma Sources Sci. Technol., 29, 12LT02 (2020). DOI: 10.1088/1361-6595/abc93f
  22. A.S. Borovikova, P.P. Gugin, D.E. Zakrevsky, E.V. Milakhina, I.V. Schweigert, Tech. Phys. Lett., 48 (10), 5 (2022). DOI: 10.21883/TPL.2022.10.54787.19308
  23. M.S. Usachonak, Yu.S. Akishev, A.V. Kazak, A.V. Petryakov, L.V. Simonchik, V.V. Shkurko, Tech. Phys., 68 (3), 325 (2023). DOI: 10.21883/TP.2023.03.55805.265-22.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru