Pinchuk M. E.
1, Stepanova O. M.
11Institute for Electrophysics and Electric Power, Russian Academy of Sciences, St. Petersburg, Russia
Email: pinchme@mail.ru, olga.stepanova707@gmail.com
An argon plasma jet, which is formed in an ambient air at the output of a quartz tube by a dielectric-barrier discharge with an electrode system consisting of central rod and outer ring electrodes and fed by an applied voltage generated as bipolar pulses bunches of variable duration, has been studied. The reproducible from bunch to bunch dynamics of propagation of guided streamers forming a plasma jet was observed. An increase in the distance traveled by each subsequent streamer compared to the previous one in each subsequent positive pulse in the bunch has been recorded. The streamer imaging was carried out in the presence of a dielectric target; the jet approaching to the target surface up to its contact has been registered. The nature of the jet propagation to the target has been shown to be controlled by changing the duration of the bunches and the time between them. Keywords: argon atmospheric pressure plasma jet, guided streamer, control of streamer propagation dynamics, dielectric barrier discharge.
- Yu.S. Akishev, Izv. vuzov. Khimiya i khim. tekhnologiya, (in Russian) 62 (8), 26 (2019). DOI: 10.6060/ivkkt.20196208.5908
- I. Adamovich, S. Agarwal, E. Ahedo, L.L. Alves, S. Baalrud, N. Babaeva, A. Bogaerts, A. Bourdon, P.J. Bruggeman, C. Canal, E.H. Choi, S. Coulombe, Z. Donko, D.B. Graves, S. Hamaguchi, D. Hegemann, M. Hori, H.-H. Kim, G.M.W. Kroesen, M.J. Kushner, A. Laricchiuta, X. Li, T.E. Magin, S. Mededovic Thagard, V. Miller, A.B. Murphy, G.S. Oehrlein, N. Puac, R.M. Sankaran, S. Samukawa, M. Shiratani, M. vSimek, N. Tarasenko, K. Terashima, E. Thomas, Jr., J. Trieschmann, S. Tsikata, M.M. Turner, I.J. van der Walt, M.C.M. van de Sanden, T. von Woedtke, J. Phys. D: Appl. Phys., 55, 373001 (2022). DOI: 10.1088/1361-6463/ac5e1c
- H.-R. Metelmann, T. von Woedtke, K.-D. Weltmann, Comprehensive clinical plasma medicine, 1st ed. (Springer International Publ., 2018). DOI: 10.1007/978-3-319-67627-2
- M. Teschke, J. Kedzierski, E.G. Finantu-Dinu, D. Korzec, J. Engemann, IEEE Trans. Plasma Sci., 33, 310 (2005). DOI: 10.1109/TPS.2005.845377
- X. Lu, G.V. Naidis, M. Laroussi, K. Ostrikov, Phys. Rep., 540, 123 (2014). DOI: 10.1016/j.physrep.2014.02.006
- Yu.S. Akishev, V.B. Karalnik, M.A. Medvedev, A.V. Petryakov, N.I. Trushkin, A.G. Shafikov, J. Phys.: Conf. Ser., 927, 012051 (2017). DOI: 10.1088/1742-6596/927/1/012051
- L. Lin, Z. Hou, X. Yao, Y. Liu, J.R. Sirigiri, T. Lee, M. Keidar, Phys. Plasmas, 27, 063501 (2020). DOI: 10.1063/5.0003528
- S.A. Norberg, G.M. Parsey, A.M. Lietz, E. Johnsen, M.J. Kushner, J. Phys. D: Appl. Phys., 52, 015201 (2018). DOI: 10.1088/1361-6463/aae41e
- M. Pinchuk, A. Nikiforov, V. Snetov, Z. Chen, C. Leys, O. Stepanova, Sci. Rep., 11, 17286 (2021). DOI: 10.1038/s41598-021-96468-4
- M.E. Pinchuk, G.B. Sretenovic, N. Cvetanovic, A.A. Dyachenko, B.M. Obradovic, O.M. Stepanova, Eur. Phys. J. D, 77, 106 (2023). DOI: 10.1140/epjd/s10053-023-00686-6
- M.E. Pinchuk, O.M. Stepanova, M. Gromov, A. Nikiforov, Publ. of the Astronomical Observatory of Belgrade, 102, 163 (2022). http://hdl.handle.net/1854/LU-8767628
- M. Pinchuk, O. Stepanova, N. Kurakina, V. Spodobin, J. Phys.: Conf. Ser., 830, 012060 (2017). DOI: 10.1088/1742-6596/830/1/012060
- O. Stepanova, M. Pinchuk, A. Astafiev, Z. Chen, Jpn. J. Appl. Phys., 59, SHHC03 (2020). DOI: 10.35848/1347-4065/ab75b4
- M.E. Pinchuk, Z. Chen, O.M. Stepanova, Appl. Phys. Lett., 119, 054103 (2021). DOI: 10.1063/5.0053672
- D.A. Malik, K.E. Orlov, I.V. Miroshnikov, A.S. Smirnov, Tech. Phys. Lett., 31 (6), 500 (2005). DOI: 10.1134/1.1969779
- S. Hofmann, A. Sobota, P. Bruggeman, IEEE Trans. Plasma Sci., 40, 2888 (2012). DOI: 10.1109/tps.2012.2211621
- T. Darny, J.-M. Pouvesle, J. Fontane, L. Joly, S. Dozias, E. Robert, Plasma Sources Sci. Technol., 26, 105001 (2017). DOI: 10.1088/1361-6595/aa8877
- N.Y. Babaeva, G.V. Naidis, V.F. Tarasenko, D.A. Sorokin, C. Zhang, T. Shao, Plasma Sci. Technol., 25, 035406 (2023). DOI: 10.1088/2058-6272/aca18e
- E.M. Bazelyan, Yu.P. Raizer. Fizika molnii i molniezaschity (Fizmatlit, M., 2001). (in Russian)
- P. Viegas, E. Slikboer, Z. Bonaventura, O. Guaitella, A. Sobota, A. Bourdon, Plasma Sources Sci. Technol., 31, 053001 (2022). DOI: 10.1088/1361-6595/ac61a9
- I.V. Schweigert, A.L. Alexandrov, D.E. Zakrevsky, Plasma Sources Sci. Technol., 29, 12LT02 (2020). DOI: 10.1088/1361-6595/abc93f
- A.S. Borovikova, P.P. Gugin, D.E. Zakrevsky, E.V. Milakhina, I.V. Schweigert, Tech. Phys. Lett., 48 (10), 5 (2022). DOI: 10.21883/TPL.2022.10.54787.19308
- M.S. Usachonak, Yu.S. Akishev, A.V. Kazak, A.V. Petryakov, L.V. Simonchik, V.V. Shkurko, Tech. Phys., 68 (3), 325 (2023). DOI: 10.21883/TP.2023.03.55805.265-22.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.