Luminescence of Eu3+ doped calcium hydroxyapatite and tricalcium phosphate powders
Sidorov I. D.1, Minnebaev T. M.1, Oleynikova E. I.1, Nizamutdinov A. S.1, Pudovkin M. S.1, Gafurov M. R.1, Nikitina Y. O. 2, Demina A. Y.2, Petrakova N. V.2, Komlev V. S.2
1Kazan Federal University, Institute of Physics, Kazan, Russia
2Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia
Email: Sidorov.I.D@mail.ru

PDF
The use of calcium phosphates as a basis for prosthetic materials for musculoskeletal injuries and luminescent probes is a promising direction because these compounds correspond to the mineral composition of bone. The results of a study of the spectral and luminescence decay of Eu3+ ions in hydroxyapatite and tricalcium phosphate matrices after synthesis and after heat treatment at 1573 K in air are discussed. A study of luminescence using a UV laser revealed lines characteristic of Eu3+ in both materials: the 5D0->7F0 and 5D0->7F2 transitions have the highest line intensity. Heat treatment led to a change in the spectral and kinetic characteristics: a significant effect on the shape of spectral lines and lifetimes was found. The luminescence decay of the samples at a wavelength of 622.7 nm before heat treatment is biexponential, which indicates the presence of nonequivalent positions of Eu3+ ions in the matrices. For a hydroxyapatite sample, annealing leads to the resolution of Stark components and intense luminescence at a wavelength of 573.7 nm, which indicates, the luminescence lifetime increases. For a tricalcium phosphate sample, annealing also leads to the resolution of Stark components in the luminescence spectrum, the luminescence decay becomes single-exponential with higher luminescence lifetime. Keywords: hydroxyapatite, tricalcium phosphate, Eu3+ ion, luminescence, luminescence decay, nonequivalent positions of Eu3+.
  1. Yu.O. Nikitina. Avtoref. kand. diss. (IMET RAS, M., 2022) (in Russian)
  2. A.M. Nikolaev, I.E. Kolesnikov, O.V. Frank-Kamenskaya, M.A. Kuzmina. Pat. RU N 2628610, Rossiyskaya Federatsiya, MPK C09K11/71. Sposob polucheniya nanorazmernogo vysokolyuminestsentnogo apatita s primes'yu yevropiya (Eu) (N 124206; zayavl. 17.06.2016; opubl. 21.08.2017) (in Russian)
  3. Yu.O. Nikitina, N.V. Petrakova, S.A. Kozyukhin, V.S. Komlev, S.M. Barinov. Pat. RU N 2779453, Rossiyskaya Federatsiya, MPK C01B25/32. Sposob polucheniya lyuminestsentnogo ortofosfata kal'tsiya, aktivirovannogo tseriyem (N 136552; zayavl. 10.12.2021; opubl. 07.09.2022) (in Russian)
  4. A. Doat, M. Fanjul, F. Pelle, E. Hollande, A. Lebugle. Biomaterials, 24 (19), 3365 (2003). DOI: 10.1016/S0142-9612(03)00169-8
  5. A. Ashokan, D. Menon, S. Nair, M. Koyakutty. Biomaterials, 31 (9), 2606 (2010). DOI: 10.1016/j.biomaterials.2009.11.113
  6. S. Mondal, V.T. Nguyen, S. Park, J. Choi, T.M.T. Vo, J.H. Shin, Y.H. Kang, J. Oh. Ceram. Intern., 46 (18), 29249 (2020). DOI: 10.1016/j.ceramint.2020.08.099
  7. A. Tesch, C. Wenisch, K.H. Herrmann, J.R. Reichenbach, P. Warncke, D. Fischer, F.A. Muller. Mater. Sci. Eng., 81, 422 (2017). DOI: 10.1016/j.msec.2017.08.032
  8. S.V. Dorozhkin. Intern. J. Mater. Chem., 2 (1), 19 (2012). DOI: 10.5923/j.ijmc.20120201.04
  9. I.E. Glazov, V.K. Krut'ko, O.N. Musskaya, A.I. Kulak. Russ. J. Inorg. Chem., 67, 173 (2022). DOI: 10.1134/S0036023622020048
  10. M. Bohner, B.L.G. Santoni, N. Dobelin. Acta Biomaterialia, 113, 23 (2020). DOI: 10.1016/j.actbio.2020.06.022
  11. L. Sinusaite, A. Kareiva, A. Zarkov. Crystal Growth \& Design, 21 (2), 1242 (2021). DOI: 10.1021/acs.cgd.0c01534
  12. R. Enderle, F. Gotz-Neunhoeffer, M. Gobbels, F.A. Muller, P. Greil. Biomaterials, 26 (17), 3379 (2005). DOI: 10.1016/j.biomaterials.2004.09.017
  13. Yu.O. Nikitina, N.V. Petrakova, S.A. Kozyukhin, V.P. Sirotinkin, A.A. Konovalov, Yu.F. Kargin, S.M. Barinov, V.S. Komleva. Inorg. Mater., 59 (4), 394 (2023). DOI: 10.1134/S002016852304009X
  14. O.A. Graeve, R. Kanakala, A. Madadi, B.C. Williams, K.C. Glass. Biomaterials, 31 (15), 4259 (2010). DOI: j.biomaterials.2010.02.009
  15. E.V. Zubar. Nanosistemi, nanomateriali, nanotekhnologii, 7 (2), 581 (2009) (in Russian)
  16. N.I. Steblevskaya, M.V. Belobeletskaya, A.Yu. Ustinov, M.A. Medkov. Zhurn. neorgan. khimii, 64 (2), 146 (2019) (in Russian). DOI: 10.1134/S0044457X19020211
  17. E.J. Kim, S.W. Choi, S.H. Hong. J. American Ceram. Society, 90 (9), 2795 (2007). DOI: 10.1111/j.1551-2916.2007.01791.x
  18. M. Macintosh, Q. Yao, J. Xu, Z. Dong, L.Y. Chang, L. Liu. Ceram. Intern., 47 (8), 11387 (2021). DOI: 10.1016/j.ceramint.2020.12.265
  19. R.A. Benhamou, A. Bessiere, G. Wallez, B. Viana, M. Elaatmani, M. Daoud, A. Zegzouti. J. Solid State Chem., 182 (8), 2319 (2009). DOI: 10.1016/j.jssc.2009.06.01

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru