Nonlinear optical limitation of laser radiation power in the ultraviolet and visible ranges by bis-phthalocyanines of the clamshell type
Savelyev M. S. 1,2, Vasilevsky P. N. 1,3, Dudin A. A. 3, Orlov A. P. 3,4, Shaman Yu. P. 3, Tolbin A. Yu. 5, Gerasimenko A. Yu. 1,2, Pavlov A.A. 3
1Institute of Biomedical Systems, National Research University of Electronic Technology, MIET, Moscow, Zelenograd, Russia
2Institute for Bionic Technologies and Engineering, Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
3 Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, Moscow, Russia
4Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
5 Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
Email: savelyev@bms.zone, pavelvasilevs@yandex.ru, alexanderdudin@msn.com, andreyorlov@mail.ru, shaman.yura@gmail.com, tolbin@inbox.ru, gerasimenko@bms.zone, pavlov.a@inme-ras.ru

PDF
UV and visible laser radiation poses a high risk to the eyes. Interaction of a beam with a high energy fluence with eye tissues causes damages, including irreversible damage to the cornea or lens. The visible laser radiation destroys a retina. Dangerous level of radiation is achieved in nanosecond pulses, which makes it difficult to use active protective equipment. In a time shorter than the pulse duration, the attenuation of laser radiation is ensured by the use of nonlinear optical materials, for which clamshell-type bis-phthalocyanines were studied & metal complexes 1a, b ( a - Zn, b - Mg) and the original ligand 2. The experiments were carried out in UV and visible range of the spectrum at wavelengths 355, 405 and 532 nm. Using the correlation method for assessing the efficiency of optical limitation (CORRELATO algorithm), it was shown that metal complexes have priority over the ligand, while the maximum efficiency was found for zinc complex 1a in the UV range. Keywords: optical limiting, phthalocyanines, Z-scan, nonlinear absorbers.
  1. T. Fahey, M. Islam, A. Gardi, R. Sabatini. Atmosphere (Basel), 12 (7), 918 (2021). DOI: 10.3390/atmos12070918
  2. S.V. Alimov, D.V. Kosachev, O.B. Danilov, A. Zhevlakov, S.V. Kashcheev, A. Mak, S.B. Petrov, V.I. Ustyugov. J. Opt. Technol., 76 (4), 199 (2009). DOI: 10.1364/JOT.76.000199
  3. C. Candan, M. Tiken, H. Berberoglu, E. Orhan, A. Yeniay. Appl. Sci., 11 (1), 403 (2021). DOI: 10.3390/app11010403
  4. V. Molebny, P. McManamon, O. Steinvall, T. Kobayashi, W. Chen. Opt. Eng., 56 (3), 031220 (2016). DOI: 10.1117/1.OE.56.3.031220
  5. H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, X. Xie. Opt. Express, 24 (4), 3535 (2016). DOI: 10.1364/OE.24.003535
  6. Y. Wang, Y. Zhao, L. Qu. J. Energy Chem., 59, 642 (2021). DOI: 10.1016/j.jechem.2020.12.002
  7. A.H.A. Lutey, A. Fortunato, A. Ascari, S. Carmignato, C. Leone. Opt. Laser Technol., 65, 164 (2015). DOI: 10.1016/j.optlastec.2014.07.023
  8. F. Hajiesmaeilbaigi, H. Razzaghi, M. Mahdizadeh, M.R.A. Moghaddam, M. Ruzbehani. Opt. Laser Technol., 43 (8), 1428 (2011). DOI: 10.1016/j.optlastec.2011.04.013
  9. P.N. Vasilevsky, M.S. Savelyev, A.Y. Tolbin, A. V. Kuksin, Y.O. Vasilevskaya, A.P. Orlov, Y.P. Shaman, A.A. Dudin, A.A. Pavlov, A.Y. Gerasimenko. Photonics, 10 (5), 537 (2023). DOI: 10.3390/photonics10050537
  10. L. Lazov, R. Teirumnieks. Edmunds Singh Ghalot. J. Def. Manag., 11 (4), 1 (2021). DOI: 10.35248/2167-0374.21.11.210
  11. Y. Barkana, M. Belkin. Surv. Ophthalmol., 44 (6), 459 (2000). DOI: 10.1016/S0039-6257(00)00112-0
  12. A.Y. Tolbin, V.I. Shestov, M.S. Savelyev, A.Y. Gerasimenko. New J. Chem., 47 (3), 1165 (2023). DOI: 10.1039/D2NJ05376D
  13. A.Y. Tolbin, M.S. Savelyev, A.Y. Gerasimenko, V.E. Pushkarev. ACS Omega., 7 (32), 28658 (2022). DOI: 10.1021/acsomega.2c03928
  14. R. Sabatini, M.A. Richardson, A. Gardi, S. Ramasamy. Prog. Aerosp. Sci., 79, 15 (2015). DOI: 10.1016/j.paerosci.2015.07.002
  15. R. Nalcaci, S. Cokakoglu. Eur. J. Dent., 07, S119 (2013). DOI: 10.4103/1305-7456.119089
  16. M. Garlinska, A. Pregowska, K. Masztalerz, M. Osial. Futur. Internet., 12 (11), 179 (2020). DOI: 10.3390/fi12110179
  17. G. Temporao, H. Zibinden, S. Tanzilli, N. Gisin, T. Aellen, M. Giovannini, J. Faist, J. von der Weid. Quant. Inf. Comput., 8 (1), 1 (2008) DOI: 10.26421/QIC8.1-2-1
  18. H. Wang, C. Ciret, C. Cassagne, G. Boudebs. Opt. Mater. Express, 9 (2), 339 (2019). DOI: 10.1364/OME.9.000339
  19. K.S. Rao, R.A. Ganeev, K. Zhang, Y. Fu, G.S. Boltaev, P.S. Krishnendu, P.V. Redkin, C. Guo. J. Nanoparticle Res., 20, 285 (2018). DOI: 10.1007/s11051-018-4391-3
  20. F. Zhang, Z. Wu, Z. Wang, D. Wang, S. Wang, X. Xu. RSC Adv., 6 (24), 20027 (2016). DOI: 10.1039/C6RA01607C
  21. M.S. Savelyev, A.Y. Gerasimenko, V.M. Podgaetskii, S.A. Tereshchenko, S.V. Selishchev, A.Y. Tolbin. Opt. Laser Technol., 117, 272 (2019). DOI: 10.1016/j.optlastec.2019.04.036
  22. A.Yu. Tolbin, V.K. Brel, V.E. Pushkarev. Mendeleev Commun., 33 (1), 93 (2023). DOI: 10.1016/j.mencom.2023.01.029
  23. A.Y. Tolbin, V.E. Pushkarev, I.O. Balashova, A.V. Dzuban, P.A. Tarakanov, S.A. Trashin, L.G. Tomilova, N.S. Zefirov. New J. Chem., 38 (12), 5825 (2014). DOI: 10.1039/C4NJ00692E
  24. A.Y. Tolbin, A.V. Dzuban, E.V. Shulishov, L.G. Tomilova, N.S. Zefirov. New J. Chem., 40 (10), 8262 (2016). DOI: 10.1039/C6NJ01187J
  25. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland. IEEE J. Quant. Electron, 26 (4), 760 (1990). DOI: 10.1109/3.53394
  26. Z. Li, N. Dong, C. Cheng, L. Xu, M. Chen, J. Wang, F. Chen. Opt. Mater. Express., 8 (5), 1368 (2018). DOI: 10.1364/OME.8.001368
  27. A. Volpi, J. Kock, A.R. Albrecht, M.P. Hehlen, R.I. Epstein, M. Sheik-Bahae. Opt. Lett., 46 (6), 1421 (2021). DOI: 10.1364/OL.419551
  28. O. Muller, V. Pichot, L. Merlat, D. Spitzer. Sci. Rep., 9, 519 (2019). DOI: 10.1038/s41598-018-36838-7
  29. A.A. Said, M. Sheik-Bahae, D.J. Hagan, T.H. Wei, J. Wang, J. Young, E.W. Van Stryland. J. Opt. Soc. Am. B., 9 (3), 405 (1992). DOI: 10.1364/JOSAB.9.000405
  30. S.J. Varma, J. Kumar, Y. Liu, K. Layne, J. Wu, C. Liang, Y. Nakanishi, A. Aliyan, W. Yang, P.M. Ajayan, J. Thomas. Adv. Opt. Mater., 5 (24), 1700713 (2017). DOI: 10.1002/adom.201700713
  31. M. Zhao, R. Peng, Q. Zheng, Q. Wang, M.-J. Chang, Y. Liu, Y.-L. Song, H.-L. Zhang. Nanoscale, 7 (20), 9268 (2015). DOI: 10.1039/C5NR01088H
  32. G. Liang, L. Zeng, Y.H. Tsang, L. Tao, C.Y. Tang, P.K. Cheng, H. Long, X. Liu, J. Li, J. Qu, Q. Wen. J. Mater. Chem. C, 6 (28), 7501 (2018). DOI: 10.1039/C8TC00498F
  33. S.-J. Ding, F. Nan, D.-J. Yang, X.-L. Liu, Y.-L. Wang, L. Zhou, Z.-H. Hao, Q.-Q. Wang. Sci. Rep., 5, 9735 (2015). DOI: 10.1038/srep09735
  34. Y. Feng, N. Dong, G. Wang, Y. Li, S. Zhang, K. Wang, L. Zhang, W.J. Blau, J. Wang. Opt. Express, 23 (1), 559 (2015). DOI: 10.1364/OE.23.000559
  35. C. Lu, H. Xuan, Y. Zhou, X. Xu, Q. Zhao, J. Bai. Photon. Res., 8 (9), 1512 (2020). DOI: 10.1364/PRJ.395870
  36. P.A. Kurian, C. Vijayan, K. Sathiyamoorthy, C.S. Suchand Sandeep, R. Philip. Nanoscale Res. Lett., 2, 561 (2007). DOI: 10.1007/s11671-007-9099-8
  37. A. Kumar, R. Kumar, N. Verma, A.V. Anupama, H.K. Choudhary, R. Philip, B. Sahoo. Opt. Mater. (Amst), 108, 110163 (2020). DOI: 10.1016/j.optmat.2020.110163
  38. K. Wang, X. Zhang, I.M. Kislyakov, N. Dong, S. Zhang, G. Wang, J. Fan, X. Zou, J. Du, Y. Leng, Q. Zhao, K. Wu, J. Chen, S.M. Baesman, K.-S. Liao, S. Maharjan, H. Zhang, L. Zhang, S.A. Curran, R.S. Oremland, W.J. Blau, J. Wang. Nat. Commun., 10, 3985 (2019). DOI: 10.1038/s41467-019-11898-z
  39. P. Kumar, M. Chandra Mathpal, G. Jagannath, J. Prakash, J.-R. Maze, W.D. Roos, H.C. Swart. Nanotechnology, 32 (34), 345709 (2021). DOI: 10.1088/1361-6528/abfee6
  40. A.Y. Tolbin. Mendeleev Commun., 33 (3), 419 (2023). DOI: 10.1016/j.mencom.2023.04.038
  41. H. Chu, Y. Li, C. Wang, H. Zhang, D. Li. Nanophotonics, 9, 761 (2020). DOI: 10.1515/nanoph-2020-0085
  42. H.S. Nalwa. Supramolecular Photosensitive and Electroactive Materials (Academic press, San Diego, 2001)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru