Electrophysical properties of thin films of holey graphene functionalized with carbonyl groups
Barkov P. V. 1, Slepchenkov M. M. 1, Glukhova O. E. 1,2
1Saratov State University, Saratov, Russia
2I.M. Sechenov First Moscow State Medical University, Moscow, Russia
Email: barkovssu@mail.ru, slepchenkovm@mail.ru, glukhovaoe@info.sgu.ru

PDF
Using the density functional theory based tight binding method, we have studied the effect of carbonyl groups on the electrophysical properties of thin films of holey graphene with almost circular holes with a diameter of 1.2 nm and a neck width of 0.7-2 nm. The landing of functional groups was carried out on atoms at the edges of the hole based on an analysis of the map of partial charge distributions according to Mulliken. The phenomenon of charge transfer from carbonyl groups to holey graphene during their interaction has been established. Regularities of changes in the specific electrical conductivity of the films under study with increasing neck width in the "zigzag" direction and in the "armchair" direction of the hexagonal graphene lattice have been revealed. It was shown that the electrical conductivity changes abruptly in the "zigzag" direction and demonstrates a close to linear increase in the "armchair" direction. The presence of anisotropy of electrical conductivity in films of holey graphene was discovered when choosing the direction of quantum electron transport. Keywords: electrical conductivity, density functional theory based tight binding method, neck width, partial charge, anisotropy.
  1. Y. Lin, Y. Liao, Zh. Chen, J.W. Connell. Mater. Res. Lett., 5, 209 (2017). DOI: 10.1080/21663831.2016.1271047
  2. J. Bai, X. Zhong, S. Jiang, X. Duan. Nature Nanotechnol., 5, 190 (2010). DOI: 10.1038/nnano.2010.8
  3. M. Kim, N.S. Safron, E. Han, M.S. Arnold, P. Gopalan. Nano Lett., 10, 1125 (2010). DOI: 10.1021/nl9032318
  4. T.H. Han, Y.-K. Huang, A.T.L. Tan, V.P. Dravid, J. Huang. J. American Chem. Society, 133, 15264 (2011). DOI: 10.1021/ja205693t
  5. X. Zhao, C.M. Hayner, M.C. Kung, H.H. Kung. Adv. Energy Mater., 1, 1079 (2011). DOI: 10.1002/aenm.201100426
  6. X. Han, M.R. Funk, F. Shen, Y.-C. Chen, Y. Li, C.J. Campbell, J. Dai, X. Yang, J.-W. Kim, Y. Liao, J.W. Connell, V. Barone, Z. Chen, Y. Lin, L. Hu. ACS Nano, 8, 8255 (2014). DOI: 10.1021/nn502635y
  7. Y. Xu, Z. Lin, X. Zhong, X. Huang, N.O. Weiss, Y. Huang, X. Duan. Nature Commun., 5, 4554 (2014). DOI: 10.1038/ncomms5554
  8. H. Sahin, S. Ciraci. Phys. Rev. B, 84, 035452 (2011). DOI: 10.1103/PhysRevB.84.035452
  9. G. Tang, Z. Zhang, X. Deng, Z. Fan, Y. Zeng, J. Zhou. Carbon, 76, 348 (2014). DOI: 10.1016/j.carbon.2014.04.086
  10. J. Zhang, W. Zhang, T. Ragab, C. Basaran. Comput. Mater. Sci., 153, 64 (2018). DOI: 10.1016/j.commatsci.2018.06.026
  11. A. Kausar. Polym.-Plast. Technol. Mater., 58, 803 (2019). DOI: 10.1080/25740881.2018.1563111
  12. M. Yarifard, J. Davoodi, H. Rafii-Tabar. Comput. Mater. Sci., 111, 247 (2016). DOI: 10.1016/j.commatsci.2015.09.033
  13. H.X. Yang, M. Chshiev, D.W. Boukhvalov, X. Waintal, S. Roche. Phys. Rev. B., 84, 214404 (2011). DOI: 10.1103/PhysRevB.84.214404
  14. M.K. Rabchinskii, A.S. Varezhnikov, V.V. Sysoev, M.A. Solomatin, S.A. Ryzhkov, M.V. Baidakova, D.Yu. Stolyarova, V.V. Shnitov, S.S. Pavlov, D.A. Kirilenko, A.V. Shvidchenko, E.Yu. Lobanova, M.V. Gudkov, D.A. Smirnov, V.A. Kislenko, S.V. Pavlov, S.A. Kislenko, N.S. Struchkov, I.I. Bobrinetskiy, A.V. Emelianov, P. Liang, Z. Liu, P.N. Brunkov. Carbon, 172, 236 (2021). DOI: 10.1016/j.carbon.2020.09.087
  15. S.A. Ryzhkov, M.K. Rabchinskii, V.V. Shnitov, M.V. Baidakova, S.I. Pavlov, D.A. Kirilenko, P.N. Brunkov. J. Phys. Conf. Ser., 1695, 012008 (2020). DOI: 10.1088/1742-6596/1695/1/012008
  16. M.K. Rabchinskii, S.D. Saveliev, D.Yu. Stolyarova, M. Brzhezinskaya, D.A. Kirilenko, M.V. Baidakova, S.A. Ryzhkov, V.V. Shnitov, V.V. Sysoev, P.N. Brunkov. Carbon, 182, 593 (2021). DOI: 10.1016/j.carbon.2021.06.057
  17. V.V. Shnitov, M.K. Rabchinskii, M. Brzhezinskaya, D.Yu. Stolyarova, S.V. Pavlov, M.V. Baidakova, A.V. Shvidchenko, V.A. Kislenko, S.A. Kislenko, P.N. Brunkov. Small, 17, 2104316 (2021). DOI: 10.1002/smll.202104316
  18. A. Winter, Y. Ekinci, A. Golzhauser, A. Turchanin. 2D Materials, 6, 021002 (2019). DOI: 10.1088/2053-1583/ab0014
  19. C. Carpenter, A.M. Christmann, L. Hu, I. Fampiou, A.R. Muniz, A. Ramasubramaniam, D. Maroudas. Appl. Phys. Lett., 104, 141911 (2014). DOI: 10.1063/1.4871304
  20. J. Park, V. Prakash. J. Appl. Phys., 116, 014303 (2014). DOI: 10.1063/1.4885055
  21. H.-J. Qian, G. Eres, S. Irle. Molecular Simulation, 43, 1269 (2017). DOI: 10.1080/08927022.2017.1328555
  22. M.M. Slepchenkov, D.S. Shmygin, G. Zhang, O.E. Glukhova. Carbon, 165, 139 (2020). DOI: 10.1016/j.carbon.2020.04.069
  23. V.V. Shunaev, O.E. Glukhova. Materials, 13, 5219 (2020). DOI: 10.3390/ma13225219
  24. W. Shim, Y. Kwon, S. Jeon, W.-R. Yu. Scientific Reports, 5, 16568 (2015). DOI: 10.1038/srep16568
  25. Y. Lin, X. Han, C.J. Campbell, J.-W. Kim, B. Zhao, W. Luo, J. Dai, L. Hu, J.W. Connell. Adv. Functional Mater., 25, 2920 (2015). DOI: 10.1002/adfm.201500321
  26. Y-Y. Peng, Y.-M. Liu, J.-K. Chang, C-H. Wu, M.-D. Ger, N.-W. Pu, C.-L. Chang. Carbon, 81, 347 (2015). DOI: 10.1016/j.carbon.2014.09.067
  27. C.-H. Yang, P.-L. Huang, X.-F. Luo, C.-H. Wang, C. Li, Y.-H. Wu, J.-K. Chang. Chem. Sus. Chem., 8, 1779 (2015). DOI: 10.1002/cssc.201500030
  28. S.P. Koenig, L. Wang, J. Pellegrino, J.S. Bunch. Nature Nanotechnol., 7, 728 (2012). DOI: 10.1038/nnano.2012.162
  29. D. Cohen-Tanugi, J.C. Grossman. Nano Lett., 12, 3602 (2012). DOI: 10.1021/nl3012853
  30. S.C. O'Hern, D. Jang, S. Bose, J.-C. Idrobo, Y. Song, T. Laoui, J. Kong, R. Karnik. Nano Lett., 15, 3254 (2015). DOI: 10.1021/acs.nanolett.5b00456
  31. S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith, S. Dai, S.M. Mahurin. Nature Nanotechnol., 10, 459 (2015). DOI: 10.1038/nnano.2015.37
  32. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai, G. Seifert. Phys. Rev. B, 58, 7260 (1998). DOI: 10.1103/PhysRevB.58.7260
  33. B. Aradi, B. Hourahine, Th. Frauenheim. J. Phys. Chem. A, 111, 5678 (2007). DOI: 10.1021/jp070186p
  34. B. Hourahine, B. Aradi, V. Blum, F. Bonafe, A. Buccheri, C. Camacho, C. Cevallos, M.Y. Deshaye, T. Dumitricv a, A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann, S. Irle, J.J. Kranz, C. Kohler, T. Kowalczyk, T. Kubav r, I.S. Lee, V. Lutsker, R.J. Maurer, S.K. Min, I. Mitchell, C. Negre, T.A. Niehaus, A.M.N. Niklasson, A.J. Page, A. Pecchia, G. Penazzi, M.P. Persson, J. v Rezav c, C.G. Sanchez, M. Sternberg, M. Stohr, F. Stuckenberg, A. Tkatchenko, V.W.-Z. Yu, T. Frauenheim. J. Chem. Phys., 152, 20 (2020). DOI: 10.1063/1.5143190
  35. M. Elstner, G. Seifert. Philos. Trans. R. Soc. A, 372, 20120483 (2014). DOI: 10.1098/rsta.2012.0483
  36. H.J. Monkhorst, J.D. Pack. Phys. Rev. B, 13, 5188 (1976). DOI: 10.1103/PhysRevB.13.5188
  37. S. Datta. Quantum Transport: Atom to Transistor (Cambridge University Press: Cambridge, London, UK, 2005), p. 404
  38. M.K. Rabchinskii, V.V. Shnitov, A.T. Dideikin, A.E. Aleksenskii, S.P. Vul, M.V. Baidakova, I.I. Pronin, D.A. Kirilenko, P.N. Brunkov, J. Weise, S.L. Molodtsov. J. Phys. Chem. C, 12, 28261 (2016). DOI: 10.1021/acs.jpcc.6b08758
  39. B. Sakkaki, H.R. Saghai, G. Darvish, M. Khatir. Opt. Mater., 122, 111707 (2021). DOI: 10.1016/j.optmat.2021.111707
  40. O.E. Glukhova, P.V. Barkov. Lett. Mater., 12, 392 (2021). DOI: 10.22226/2410-3535-2021-4-392-396

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru