Electrophysical properties of thin films of holey graphene functionalized with carbonyl groups
Barkov P. V.
1, Slepchenkov M. M.
1, Glukhova O. E.
1,21Saratov State University, Saratov, Russia
2I.M. Sechenov First Moscow State Medical University, Moscow, Russia
Email: barkovssu@mail.ru, slepchenkovm@mail.ru, glukhovaoe@info.sgu.ru
Using the density functional theory based tight binding method, we have studied the effect of carbonyl groups on the electrophysical properties of thin films of holey graphene with almost circular holes with a diameter of 1.2 nm and a neck width of 0.7-2 nm. The landing of functional groups was carried out on atoms at the edges of the hole based on an analysis of the map of partial charge distributions according to Mulliken. The phenomenon of charge transfer from carbonyl groups to holey graphene during their interaction has been established. Regularities of changes in the specific electrical conductivity of the films under study with increasing neck width in the "zigzag" direction and in the "armchair" direction of the hexagonal graphene lattice have been revealed. It was shown that the electrical conductivity changes abruptly in the "zigzag" direction and demonstrates a close to linear increase in the "armchair" direction. The presence of anisotropy of electrical conductivity in films of holey graphene was discovered when choosing the direction of quantum electron transport. Keywords: electrical conductivity, density functional theory based tight binding method, neck width, partial charge, anisotropy.
- Y. Lin, Y. Liao, Zh. Chen, J.W. Connell. Mater. Res. Lett., 5, 209 (2017). DOI: 10.1080/21663831.2016.1271047
- J. Bai, X. Zhong, S. Jiang, X. Duan. Nature Nanotechnol., 5, 190 (2010). DOI: 10.1038/nnano.2010.8
- M. Kim, N.S. Safron, E. Han, M.S. Arnold, P. Gopalan. Nano Lett., 10, 1125 (2010). DOI: 10.1021/nl9032318
- T.H. Han, Y.-K. Huang, A.T.L. Tan, V.P. Dravid, J. Huang. J. American Chem. Society, 133, 15264 (2011). DOI: 10.1021/ja205693t
- X. Zhao, C.M. Hayner, M.C. Kung, H.H. Kung. Adv. Energy Mater., 1, 1079 (2011). DOI: 10.1002/aenm.201100426
- X. Han, M.R. Funk, F. Shen, Y.-C. Chen, Y. Li, C.J. Campbell, J. Dai, X. Yang, J.-W. Kim, Y. Liao, J.W. Connell, V. Barone, Z. Chen, Y. Lin, L. Hu. ACS Nano, 8, 8255 (2014). DOI: 10.1021/nn502635y
- Y. Xu, Z. Lin, X. Zhong, X. Huang, N.O. Weiss, Y. Huang, X. Duan. Nature Commun., 5, 4554 (2014). DOI: 10.1038/ncomms5554
- H. Sahin, S. Ciraci. Phys. Rev. B, 84, 035452 (2011). DOI: 10.1103/PhysRevB.84.035452
- G. Tang, Z. Zhang, X. Deng, Z. Fan, Y. Zeng, J. Zhou. Carbon, 76, 348 (2014). DOI: 10.1016/j.carbon.2014.04.086
- J. Zhang, W. Zhang, T. Ragab, C. Basaran. Comput. Mater. Sci., 153, 64 (2018). DOI: 10.1016/j.commatsci.2018.06.026
- A. Kausar. Polym.-Plast. Technol. Mater., 58, 803 (2019). DOI: 10.1080/25740881.2018.1563111
- M. Yarifard, J. Davoodi, H. Rafii-Tabar. Comput. Mater. Sci., 111, 247 (2016). DOI: 10.1016/j.commatsci.2015.09.033
- H.X. Yang, M. Chshiev, D.W. Boukhvalov, X. Waintal, S. Roche. Phys. Rev. B., 84, 214404 (2011). DOI: 10.1103/PhysRevB.84.214404
- M.K. Rabchinskii, A.S. Varezhnikov, V.V. Sysoev, M.A. Solomatin, S.A. Ryzhkov, M.V. Baidakova, D.Yu. Stolyarova, V.V. Shnitov, S.S. Pavlov, D.A. Kirilenko, A.V. Shvidchenko, E.Yu. Lobanova, M.V. Gudkov, D.A. Smirnov, V.A. Kislenko, S.V. Pavlov, S.A. Kislenko, N.S. Struchkov, I.I. Bobrinetskiy, A.V. Emelianov, P. Liang, Z. Liu, P.N. Brunkov. Carbon, 172, 236 (2021). DOI: 10.1016/j.carbon.2020.09.087
- S.A. Ryzhkov, M.K. Rabchinskii, V.V. Shnitov, M.V. Baidakova, S.I. Pavlov, D.A. Kirilenko, P.N. Brunkov. J. Phys. Conf. Ser., 1695, 012008 (2020). DOI: 10.1088/1742-6596/1695/1/012008
- M.K. Rabchinskii, S.D. Saveliev, D.Yu. Stolyarova, M. Brzhezinskaya, D.A. Kirilenko, M.V. Baidakova, S.A. Ryzhkov, V.V. Shnitov, V.V. Sysoev, P.N. Brunkov. Carbon, 182, 593 (2021). DOI: 10.1016/j.carbon.2021.06.057
- V.V. Shnitov, M.K. Rabchinskii, M. Brzhezinskaya, D.Yu. Stolyarova, S.V. Pavlov, M.V. Baidakova, A.V. Shvidchenko, V.A. Kislenko, S.A. Kislenko, P.N. Brunkov. Small, 17, 2104316 (2021). DOI: 10.1002/smll.202104316
- A. Winter, Y. Ekinci, A. Golzhauser, A. Turchanin. 2D Materials, 6, 021002 (2019). DOI: 10.1088/2053-1583/ab0014
- C. Carpenter, A.M. Christmann, L. Hu, I. Fampiou, A.R. Muniz, A. Ramasubramaniam, D. Maroudas. Appl. Phys. Lett., 104, 141911 (2014). DOI: 10.1063/1.4871304
- J. Park, V. Prakash. J. Appl. Phys., 116, 014303 (2014). DOI: 10.1063/1.4885055
- H.-J. Qian, G. Eres, S. Irle. Molecular Simulation, 43, 1269 (2017). DOI: 10.1080/08927022.2017.1328555
- M.M. Slepchenkov, D.S. Shmygin, G. Zhang, O.E. Glukhova. Carbon, 165, 139 (2020). DOI: 10.1016/j.carbon.2020.04.069
- V.V. Shunaev, O.E. Glukhova. Materials, 13, 5219 (2020). DOI: 10.3390/ma13225219
- W. Shim, Y. Kwon, S. Jeon, W.-R. Yu. Scientific Reports, 5, 16568 (2015). DOI: 10.1038/srep16568
- Y. Lin, X. Han, C.J. Campbell, J.-W. Kim, B. Zhao, W. Luo, J. Dai, L. Hu, J.W. Connell. Adv. Functional Mater., 25, 2920 (2015). DOI: 10.1002/adfm.201500321
- Y-Y. Peng, Y.-M. Liu, J.-K. Chang, C-H. Wu, M.-D. Ger, N.-W. Pu, C.-L. Chang. Carbon, 81, 347 (2015). DOI: 10.1016/j.carbon.2014.09.067
- C.-H. Yang, P.-L. Huang, X.-F. Luo, C.-H. Wang, C. Li, Y.-H. Wu, J.-K. Chang. Chem. Sus. Chem., 8, 1779 (2015). DOI: 10.1002/cssc.201500030
- S.P. Koenig, L. Wang, J. Pellegrino, J.S. Bunch. Nature Nanotechnol., 7, 728 (2012). DOI: 10.1038/nnano.2012.162
- D. Cohen-Tanugi, J.C. Grossman. Nano Lett., 12, 3602 (2012). DOI: 10.1021/nl3012853
- S.C. O'Hern, D. Jang, S. Bose, J.-C. Idrobo, Y. Song, T. Laoui, J. Kong, R. Karnik. Nano Lett., 15, 3254 (2015). DOI: 10.1021/acs.nanolett.5b00456
- S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith, S. Dai, S.M. Mahurin. Nature Nanotechnol., 10, 459 (2015). DOI: 10.1038/nnano.2015.37
- M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai, G. Seifert. Phys. Rev. B, 58, 7260 (1998). DOI: 10.1103/PhysRevB.58.7260
- B. Aradi, B. Hourahine, Th. Frauenheim. J. Phys. Chem. A, 111, 5678 (2007). DOI: 10.1021/jp070186p
- B. Hourahine, B. Aradi, V. Blum, F. Bonafe, A. Buccheri, C. Camacho, C. Cevallos, M.Y. Deshaye, T. Dumitricv a, A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann, S. Irle, J.J. Kranz, C. Kohler, T. Kowalczyk, T. Kubav r, I.S. Lee, V. Lutsker, R.J. Maurer, S.K. Min, I. Mitchell, C. Negre, T.A. Niehaus, A.M.N. Niklasson, A.J. Page, A. Pecchia, G. Penazzi, M.P. Persson, J. v Rezav c, C.G. Sanchez, M. Sternberg, M. Stohr, F. Stuckenberg, A. Tkatchenko, V.W.-Z. Yu, T. Frauenheim. J. Chem. Phys., 152, 20 (2020). DOI: 10.1063/1.5143190
- M. Elstner, G. Seifert. Philos. Trans. R. Soc. A, 372, 20120483 (2014). DOI: 10.1098/rsta.2012.0483
- H.J. Monkhorst, J.D. Pack. Phys. Rev. B, 13, 5188 (1976). DOI: 10.1103/PhysRevB.13.5188
- S. Datta. Quantum Transport: Atom to Transistor (Cambridge University Press: Cambridge, London, UK, 2005), p. 404
- M.K. Rabchinskii, V.V. Shnitov, A.T. Dideikin, A.E. Aleksenskii, S.P. Vul, M.V. Baidakova, I.I. Pronin, D.A. Kirilenko, P.N. Brunkov, J. Weise, S.L. Molodtsov. J. Phys. Chem. C, 12, 28261 (2016). DOI: 10.1021/acs.jpcc.6b08758
- B. Sakkaki, H.R. Saghai, G. Darvish, M. Khatir. Opt. Mater., 122, 111707 (2021). DOI: 10.1016/j.optmat.2021.111707
- O.E. Glukhova, P.V. Barkov. Lett. Mater., 12, 392 (2021). DOI: 10.22226/2410-3535-2021-4-392-396
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.