Controlling the electronic properties of quasi-2D borophene/GaN and borophene/ZnO van der Waals heterostructures through deformation
Slepchenkov M.M. 1, Kolosov D.A. 1, Glukhova O.E. 1,2
1Saratov State University, Saratov, Russia
2I.M. Sechenov First Moscow State Medical University, Moscow, Russia
Email: slepchenkovm@mail.ru, demkol.93@mail.ru, glukhovaoe@info.sgu.ru

PDF
Within the framework of density functional theory, an ab initio study of the influence of uniaxial and biaxial compression/tension deformation on the electronic properties of two types of van der Waals quasi-2D heterostructures is carried out. The first type of heterostructures is formed by 2D monolayers of buckled triangular borophene and graphene-like gallium nitride. The second type of heterostructures is formed by 2D monolayers of buckled triangular borophene and graphene-like zinc oxide. The cases of deformation that lead to the appearance of an energy gap in the band structure of the studied heterostructures are determined. To explain the reason for the opening of the gap, calculations of the distributions of the total and partial densities of electronic states are performed. A numerical estimate of the magnitude of the p-type Schottky barrier for holes and the n-type Schottky barrier for electrons in borophene/GaN and borophene/ZnO heterostructures is given. Keywords: density functional theory, band structure, density of states, energy gap, Schottky barrier.
  1. A.K. Geim, I.V. Grigorieva. Nature, 499, 419 (2013). DOI: 10.1038/nature12385
  2. K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto. Science, 353, aac9439 (2016). DOI: 10.1126/science.aac94
  3. X. Kong, Q. Liu, C. Zhang, Z. Peng, Q. Chen, Chem. Soc. Rev., 46, 2127 (2017). DOI: 10.1039/C6CS00937A
  4. J. Yao, G. Yanga. J. Appl. Phys., 131, 161101 (2022). DOI: 10.1063/5.0087503
  5. Y. Liu, N.O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, X. Duan. Nat. Rev. Mater., 1, 16042 (2016). DOI: 10.1038/natrevmats.2016.42
  6. W. Ahmad, L. Pan, K. Khan, L. Jia, Q. Zhuang, Z. Wang. Adv. Funct. Mater., 33, 2300686 (2023). DOI: 10.1002/adfm.202300686
  7. S. Zhang, M. Maruyama, S. Okada, M. Xue, K. Watanabe, T. Taniguchi, K. Hashimoto, Y. Miyata, R. Canton-Vitoriaa, R. Kitaura, Nanoscale, 15, 5948 (2023). DOI: 10.1039/D2NR06616E
  8. Z. Kang, Y. Ma, X. Tan, M. Zhu, Z. Zheng, N. Liu, L. Li, Z. Zou, X. Jiang, T. Zhai, Y. Gao. Adv. Electron. Mater., 3, 1700165 (2017). DOI: 10.1002/aelm.201700165
  9. X. Zhou, X. Hu, J. Yu, S. Liu, Z. Shu, Q. Zhang, H. Li, Y. Ma, H. Xu, T. Zhai. Adv. Funct. Mater., 28, 1706587 (2018). DOI: 10.1002/adfm.201706587
  10. H.-L. Hou, C. Anichini, P. Samor\`i, A. Criado, M. Prato. Adv. Funct. Mater., 32, 2207065 (2022). DOI: 10.1002/adfm.202207065
  11. A.J. Mannix, X.-F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B.L. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. Hersam, N.P. Guisinger. Science, 350, 1513 (2015). DOI: 10.1126/science.aad1080
  12. M.G. Cuxart, K. Seufert, V. Chesnyak, W.A. Waqas, A. Robert, M.L. Bocquet, G.S. Duesberg, H. Sachdev, W. Auwarter. Sci. Adv., 7, eabk1490 (2021). DOI: 10.1126/sciadv.abk1490
  13. P. Ranjan, J.M. Lee, P. Kumar, A. Vinu. Adv. Mater., 32, e2000531 (2020). DOI: 10.1002/adma.202000531
  14. Y.V. Kaneti, D.P. Benu, X. Xu, B. Yuliarto, Y. Yamauchi, D. Golberg. Chem. Rev., 122, 1000 (2022). DOI: 10.1021/acs.chemrev.1c00233
  15. D.J. Joshi, N.I. Malek, S.K. Kailasa. New J. Chem., 46, 4514 (2022). DOI: 10.1039/D1NJ05271C
  16. A. Rahman, M.T. Rahman, M.A. Chowdhury, S.B. Ekram, M.M. Kamal Uddin, Md.R. Islam, L. Dong. Sens. Actuator A Phys., 359, 114468 (2023). DOI: 10.1016/j.sna.2023.114468
  17. J.W. Jiang, X.C. Wang, Y. Song, W.B. Mi. Appl. Surf. Sci., 440, 42 (2018). DOI: 10.1016/j.apsusc.2018.01.140
  18. S. Jing, W. Chen, J. Pan, W. Li, B. Bian, B. Liao, G. Wang. Mater. Sci. Semicond. Process., 146, 106673 (2022). DOI: 10.1016/j.mssp.2022.106673
  19. N. Katoch, A. Kumar, R. Sharma, P.K. Ahluwalia, J. Kumar. Phys. E: Low-Dimens. Syst. Nanostructures, 2020, 120, 113842. DOI: 10.1016/j.physe.2019.113842
  20. C. Hou, G. Tai, B. Liu, Z. Wu, Y. Yin. Nano Res., 14, 2337 (2021). DOI: 10.1007/s12274-020-3232-8
  21. J. Shen, Z. Yang, Y. Wang, L.-C. Xu, R. Liu, X. Liu. J. Phys. Chem. C, 125, 427 (2021). DOI: 10.1021/acs.jpcc.0c08580
  22. K. Vishwakarma, S. Rani, S. Chahal, C.Y. Lu, S.J. Ray, C.-S. Yang, P. Kumar. Phys. Chem. Chem. Phys., 24, 12816 (2022). DOI: 10.1039/D2CP01712A
  23. Z. Zhang, E.S. Penev, B.I. Yakobson. Chem. Soc. Rev., 46, 6746 (2017). DOI: 10.1039/C7CS00261K
  24. S. Zhang, A. Hu, Q. Liu, L. Xu, X. Ren, B. Wang, Y. Ren, W. Liu, X. Zhou, S. Chen, X. Guo. Adv. Electron. Mater., 9, 2300243 (2023). DOI: 10.1002/aelm.202300243
  25. A. Kumar, A. Varghese, V. Janyani. J. Mater. Sci.: Mater. Electron., 33, 3880 (2022). DOI: 10.1007/s10854-021-07578-8
  26. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal. J. Phys.: Condens. Matt., 14, 2745 (2002). DOI: 10.1088/0953-8984/14/11/302
  27. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais. Phys. Rev. B, 46, 6671 (1992). DOI: 10.1103/PhysRevB.46.6671
  28. S. Grimme. J. Comput. Chem., 27, 1787 (2006). DOI: 10.1002/jcc.20495
  29. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton. Phys. Rev. B, 57, 1505 (1998). DOI: 10.1103/PhysRevB.57.1505
  30. The Materials Project. Electronic source. Available at: URL: https://materialsproject.org/
  31. B. Peng, H. Zhang, H. Shao, Z. Ning, Y. Xu, G. Ni, H. Lu, D.W. Zhang, H. Zhu. Mater. Res. Lett., 5, 399 (2017). DOI: 10.1080/21663831.2017.1298539
  32. M. Idrees, C.V. Nguyen, H.D. Bui, I. Ahmad, B. Amin. Phys. Chem. Chem. Phys., 22, 20704 (2020). DOI: 10.1039/D0CP03434G
  33. X. Gao, Y. Shen, Y. Ma, S. Wu, Z. Zhou. J. Mater. Chem. C, 7, 4791 (2019). DOI: 10.1039/C9TC00423H
  34. H. Xiang, H. Quan, Y. Hu, W. Zhao, B. Xu, J. Yin. J. Inorg. Mater., 36, 492 (2021). DOI: 10.15541/jim20200346
  35. R.T. Tung. Appl. Phys. Rev., 1, 011304 (2014). DOI: 10.1063/1.4858400
  36. F. Zhang, W. Li, Y. Ma, Y. Tang, X. Dai, RSC Adv., 7, 29350 (2017). DOI: 10.1039/C7RA00589J

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru