Improvement physical and mechanical properties of Ti-6Al-4V alloy processed by selective laser melting
Gryaznov M. Yu.1, Shotin S. V.1, Chuvil’deev V. N.1, Semenycheva A. V.1, Sysoev A. N.1, Piskunov A. V. 1
1Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia
Email: gryaznov@nifti.unn.ru, shotin@nifti.unn.ru, chuvildeev@nifti.unn.ru, semenycheva@nifti.unn.ru, sysoev@nifti.unn.ru, avpiskunov@nifti.unn.ru

PDF
The physical and mechanical properties of Ti-6Al-4V titanium alloy processed by selective laser melting were studied. It is shown that the strength characteristics under optimal fusion conditions (strength limit 1300 MPa and conditional yield strength 1250 MPa) are 30% higher than the standard values for this alloy made using traditional technologies (rolling, forging). The reason for the increase in the strength characteristics of the Ti-6Al-4V alloy is the presence of a finely dispersed martensitic α +β structure formed due to high crystallization rates realized during selective laser melting. At the same time, the optimization of scanning tactics allows to achieve elongation to failure of 11% by reducing porosity and the level of internal stresses. Keywords: titanium alloy Ti-6Al-4V, additive technologies, selective laser melting, density, strength, plasticity, microstructure, implants for surgery.
  1. F. Bartolomeu, M.M. Costa, J.R. Gomes, N. Alves, C.S. Abreu, F.S. Silva, G. Miranda. Tribol. Int., 129, 272 (2019). DOI: 10.1016/j.triboint.2018.08.012
  2. R. Krishna. Titanium Alloys --- Recent Progress in Design, Processing, Characterization, and Applications (IntechOpen, 2023)
  3. C. Jaiswal. Titanium Alloys Market Research Report Information By Type (commercially Pure Titanium, Titanium Alloys), By Application (Structural Airframes, Engines, Others), And By Region (North America, Europe, Asia-Pacific, And Rest Of The World) --- Market Forecast Till 2030 (USA, 2023)
  4. E. Fereiduni, A. Ghasemi, M. Elbestawi. Aerospace, 7 (6), 77 (2020). DOI: 10.3390/aerospace7060077
  5. N. Koju, S. Niraula, B. Fotovvati. Metals, 12, 687 (2022). DOI: 10.3390/met12040687
  6. S. Rajendran, Mu. Naushad, D. Durgalakshmi, E. Lichtfouse (editors). Metal, Metal Oxides and Metal Sulphides for Biomedical Applications (Springer, NY., 2021)
  7. G. Lutjering, J.C. Williams. Titanium Springer-Verlag (Berlin, Heidelberg, 2003)
  8. R. Boyer, E.W. Collings, G. Welsch (editors). Materials Properties Handbook: Titanium Alloys (ASM International, 1994)
  9. M.Yu. Gryaznov, S.V. Shotin, V.N. Chuvildeev, A.N. Sysoev, N.V. Melekhin, A.V. Piskunov, N.V. Sakharov, A .V. Semenycheva, A.A. Murashov. ZhTF, 92 (2), 241 (2023). (in Russian). DOI: 10.21883/JTF.2023.02.54499.209-22
  10. Y. Bozkurt, E. Karayel. J. Mater. Res., 14, 1430 (2021). DOI: 10.1016/j.jmrt.2021.07.050
  11. F. Liu, T. Zhou, T. Zhang, H. Xie, Y. Tang, P. Zhang. Mat. Des., 217, 110630 (2022). DOI: 10.1016/j.matdes.2022.110630
  12. A.N. Aufa, M.Z. Hassan, Z. Ismail. J. Alloys Compd., 896, 163072 (2022). DOI: 10.1016/j.jallcom.2021.163072
  13. Z. Guo, Ch. Wang, C. Du, J. Sui, J. Liu. Proc. CIRP, 89, 126 (2020). DOI: 10.1016/j.procir.2019.12.003
  14. Z. Liang, X.Chen, Z.Sun, Y.Guo, Y. Li, H. Chang, L. Zhou. J. Manuf. Process, 84, 414 (2022). DOI: 10.1016/j.jmapro.2022.09.041
  15. O.B. Perevalova, A.V. Panin, M.S. Kazachenok. ZhTF, 90 (3), 410 (2020). (in Russian). DOI: 10.21883/JTF.2020.03.48924.256-19
  16. J. Liu, Q. Sun, C. Zhou, X. Wang, H. Li, K. Guo, J. Sun. Mater. Sci. Eng. A, 766, 138319 (2019). DOI: 10.1016/j.msea.2019.138319
  17. X.Yan, S. Yin, C. Chen, C. Huang, R. Bolot, R. Lupoi, M. Kuang, W. Ma, C. Coddet, H. Liao, M. Liu. J. Alloys Comp., 764, 1056 (2018). DOI: 10.1016/j.jallcom.2018.06.076
  18. M. Shunmugavel, A. Polishetty, G. Littlefair. Proc. Technol., 20, 231 (2015). DOI: 10.1016/j.protcy.2015.07.037
  19. E. Alabort, Y.T. Tang, D. Barba, R.C. Reed. Acta Mater., 229, 117749 (2022). DOI: 10.1016/j.actamat.2022.117749
  20. GOST R ISO 5832-3:2021 Implants for surgery. Metallic materials. Part 3. Wrought titanium 6-aluminium 4-vanadium alloy. Official publication (International Standard published, 2021)
  21. P.A. Shweitzer. Metallic Materials. Physical, Mechanical and Corrosion Properties (Marcel Dekker, Inc. NY., USA, 2003)
  22. L.X. Meng, D.D. Ben, H.J. Yang, H.B. Ji, D.L. Lian, Y.K. Zhu, J. Chen, J.L. Yi, L. Wang, J.B. Yang, Z.F. Zhang. Mater. Sci. Eng. A, 815, 141254 (2021). DOI: 10.1016/j.msea.2021.141254
  23. T. Rautio, A. Hamada, J. Makikangas, M. Jaskari, A. Jarvenpaa. Mater. Today: Proc., 28, 907 (2020). DOI: 10.1016/j.matpr.2019.12.322
  24. P. Kumar, U. Ramamurty. Acta Mater., 194, 305 (2020). DOI: 10.1016/j.actamat.2020.05.041
  25. S. Vaudreuil, S.-E. Bencaid, H.R. Vanaei, A. El Magri. Materials, 15, 8640 (2022). DOI: 10.3390/ma15238640J
  26. Y. Yang, M. Zhao, H. Wang, K. Zhou, Y. He, Y. Mao, D. Xie, F. Lv, L. Shen. Appl. Sci., 13, 1828 (2023). DOI: 10.3390/app13031828
  27. Y. Chen, S.J. Clark, C.L.A. Leung, L. Sinclair, S. Marussi, M.P. Olbinado, E. Boller, A. Rack, I. Todd, P.D. Lee. Appl. Mater. Today, 20, 100650 (2020). DOI: 10.1016/j.apmt.2020.100650
  28. J. Liu, P. Wen. Mat. Des., 215, 110505 (2022). DOI: 10.1016/j.matdes.2022.110505
  29. L.-Ch. Zhang, H. Attar. Adv. Eng. Mater., 18 (4), 463 (2016). DOI: 10.1002/adem.201500419
  30. Z. Liang, Z. Sun, W. Zhang, S. Wu, H. Chang. J. Alloys Compd., 782 (25), 1041 (2019). DOI: 10.1016/j.jallcom.2018.12.051
  31. A.D. Baghi, S. Nafisi, R. Hashemi, H. Ebendorff-Heidepriem, R. Ghomashchi. J. Manuf. Process., 68, 1031 (2021). DOI: 10.1016/j.jmapro.2021.06.035
  32. Y. Xiao, L. Lan, S. Gao, Bo He, Y. Rong. Mater. Sci. Eng. A, 858, 144174 (2022). DOI: 10.1016/j.msea.2022.144174
  33. L. Zhou, T. Yuan, J.Z. Tang, J. He, R. Li. Opt. Laser Technol., 119, 105625 (2019). DOI: 10.1016/j.optlastec.2019.105625
  34. Q. Yan, B. Chen, N. Kang, X. Lin, S. Lv, K. Kondoh, S. Li, J.S. Li. Mater. Charact., 164, 110358 (2020). DOI: 10.1016/j.matchar.2020.110358
  35. Z.H. Jiao, R.D. Xu, H.C. Yu, X.R. Wu. Proc. Struct. Integr., 7, 124 (2017). DOI: 10.1016/j.prostr.2017.11.069
  36. N. Rahulan, S.S. Sharma, N. Rakesh, R. Sambhu. Mater. Today: Proc., 56, A7 (2022). DOI: 10.1016/j.matpr.2022.04.310
  37. American Society for Testing Materials. ASTM FL108-14. Standard Specification for Titanium-6 Aluminum-4 Vanadium Alloy Castings for Surgical Implants (UNS R56406) (ASTM International: West Conshohocken, PA, USA, 2014)
  38. S. Giganto, S. Martinez-Pellitero, J. Barreiro, P. Leo, M.A. Castro-Sastre. J. Mater. Res. Technol., 20, 2734 (2022). DOI: 10.1016/j.jmrt.2022.08.040
  39. L.N. Carter, Ch. Martin, Ph.J. Withers, M.M. Attallah. J. Alloys Compd., 615, 338 (2014). DOI: 10.1016/j.jallcom.2014.06.172
  40. T. Rautio, A. Mustakangas, J. Kumpula, A. Jarvenpaa. Proc. CIRP, 111, 130 (2022). DOI: 10.1016/j.procir.2022.08.106
  41. J. Song, W. Wu, L. Zhang, B. He, L. Lu, X. Ni, Q. Long, G. Zhu. Optik, 170, 342 (2018). DOI: 10.1016/j.ijleo.2018.05.128

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru