International Conference PhysicA.SPb 23-27 October, 2023 St. Petersburg Behavior of the linearized ballistic-conductive model of heat conduction in three-dimensional space
Rukolaine S. A.1
1Ioffe Institute, St. Petersburg, Russia
Email: rukol@ammp.ioffe.ru

PDF
The heat equation, based on Fourier's law, is commonly used for description of heat conduction. However, Fourier's law is valid under the assumption of local thermodynamic equilibrium, which is violated in very small dimensions and short timescales, and at low temperatures. As a replacement for Fourier's law, many models have been proposed within the framework of various theories. In this paper we study the behavior of solutions to an initial value problem in 3D in the framework of the linearized ballistic-conductive (BC) model. As a result, an unphysical effect is detected when the temperature in the heat wave takes negative values. Keywords: non-Fourier heat conduction, hyperbolic heat conduction, the ballistic-conductive model, initial value problem.
  1. D.D. Joseph, L. Preziosi. Rev. Mod. Phys., 61, 41 (1989). DOI: 10.1103/RevModPhys.61.41
  2. Y. Guo, M. Wang. Phys. Rep., 595, 1 (2015). DOI: 10.1016/j.physrep.2015.07.003
  3. Z.M. Zhang. Nano/Microscale Heat Transfer (Springer, Cham, 2020), DOI: 10.1007/978-3-030-45039-7
  4. G. Chen Nat. Rev. Phys., 3, 555 (2021). DOI: 10.1038/s42254-021-00334-1
  5. A.I. Zhmakin. Tech. Phys., 91, 5 (2021). DOI: 10.1134/S1063784221010242
  6. R.A. Guyer, J.A. Krumhansl. Phys. Rev., 148, 766 (1966). DOI: 10.1103/PhysRev.148.766
  7. W. Dreyer, H. Struchtrup. Continuum Mech. Thermodyn., 5, 3 (1993). DOI: 10.1007/BF01135371
  8. D.Y. Tzou. Macro- to Microscale Heat Transfer: The Lagging Behavior (Taylor \& Francis, Washington, 1997), DOI: 10.1002/9781118818275
  9. I. Muller, T. Ruggeri. Rational Extended Thermodynamics (Springer, NY., 1998), DOI: 10.1007/978-1-4612-2210-1
  10. H.C. Ottinger. Beyond Equilibrium Thermodynamics (Wiley, Hoboken, 2005), DOI: 10.1002/0471727903
  11. D. Jou, J. Casas-Vazquez, G. Lebon. Extended Irreversible Thermodynamics (Springer, NY., 2010). DOI: 10.1007/978-90-481-3074-0
  12. Y. Dong, B.-Y. Cao, Z.-Y. Guo. J. Appl. Phys., 110, 063504 (2011). DOI: 10.1063/1.3634113
  13. P.Van, T. Fulop. Ann. Phys. (Berlin), 524, 470 (2012). DOI: 10.1002/andp.201200042
  14. R. Kovacs, P. Van. Int. J. Heat Mass Transf., 83, 613 (2015). DOI: 10.1016/j.ijheatmasstransfer.2014.12.045
  15. R. Kovacs, P. Van. Int. J. Thermophys., 37, 95 (2016). DOI: 10.1007/s10765-016-2100-y
  16. R. Kovacs, P. Van. Int. J. Heat Mass Transf., 117, 682 (2018). DOI: 10.1016/j.ijheatmasstransfer.2017.10.041
  17. M. Szucs, M. Pavelka, R. Kovacs, T. Fulop, P. Van, M. Grmela. J. Non-Equilib. Thermodyn., 47, 31 (2022). DOI: 10.1515/jnet-2021-0022
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru