Structure and electrical properties of Con(CoO)100-n thin-film composites
Sitnikov A.V. 1, Makagonov V.A. 1, Kalinin Y.E. 1, Kushchev S.B. 1, Foshin V.A. 1
1Voronezh State Technical University, Voronezh, Russia
Email: sitnikov04@mail.ru, vlad_makagonov@mail.ru, kalinin48@mail.ru, kushev_sb@mail.ru, vadim.foshin@yandex.ru

PDF
The electrical properties of Con(CoO)100-n composite thin films obtained by ion-beam sputtering of a composite target in an argon atmosphere and a mixed atmosphere of argon and oxygen (98% Ar + 2% O2) have been studied. It has been established that if oxygen is introduced into the deposition chamber, the position of the percolation threshold shifts towards lower concentrations of the metal phase. It is associated with the special morphology of the films, when small metal Co nanoparticles are located along the boundaries of larger CoO particles, as well as a decrease in the size of inclusions of the metal phase. Studies of the temperature dependences of the electrical resistivity of synthesized Con(CoO)100-n films have shown that when the metal phase content is up to the percolation threshold the dominant mechanism of charge transfer in the temperature range of 80-140 K is the variable range hopping mechanism of conduction through localized states near the Fermi level, replaced by the nearest neighbors conductivity in the temperature range of 140-300 K. For beyond the percolation threshold Con(CoO)100-n thin films, the conductivity is determined by a network of metal granules and is characterized by a positive temperature coefficient of electrical resistance. Keywords: Electrical conductivity, nanocomposites, percolation threshold, hopping conductivity.
  1. T. Wen, K.M. Krishnan. J. Phys. D: Appl. Phys., 44 (39), 393001 (2011). DOI: 10.1088/0022-3727/44/39/393001
  2. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, Y. Tserkovnyak. Rev. Mod. Phys., 90 (1), 015005 (2018). DOI: 10.1103/RevModPhys.90.015005
  3. Q. Wu, L. Yang, X. Wang, Z. Hu. Adv. Mater., 32 (27), 1904177 (2019). DOI: 10.1002/adma.201904177
  4. Yu. Sun, C.R. Sullivan, W. Li, D. Kopp, F. Johnson, S.T. Taylor. IEEE Trans. Magn., 43 (12), 4060 (2007). DOI: 10.1109/TMAG.2007.907503
  5. L.V. Spivak, A.V. Sosunov, N.E. Shchepina. Tech. Phys. Lett., 48 (8), 66 (2022). DOI: 10.21883/TPL.2022.08.55066.19258
  6. D. Yao, C.G. Levey, R. Tian, C.R. Sullivan. IEEE Trans. Power Electron., 28 (9), 4384 (2013). DOI: 10.1109/TPEL.2012.2233760
  7. Z. Ma, F. Jing, Y. Fan, J. Li, Y. Zhao, G. Shao. J. Alloys Compd., 789, 71 (2019). DOI: 10.1016/J.JALLCOM.2019.03.035
  8. M. Baikousi, O. Kostoula, I. Panagiotopoulos, T. Bakas, A.P. Douvalis, I. Koutselas, A.B. Bourlinos, M.A. Karakassides. Thin Solid Films, 520 (1), 159 (2011). DOI: 10.1016/j.tsf.2011.06.110
  9. H.I. Blythe, V.M. Fedosyuk, O.I. Kasyutich. Mater. Lett., 26 (1-2), 69 (1996). DOI: 10.1016/0167-577X(95)00207-3
  10. D.A. Petrov, I.S. Edelman, R.D. Ivantsov. Solid State Phenom., 215, 214 (2014). DOI: 10.4028/www.scientific.net/SSP.215.214
  11. V.G. Myagkov, L.E. Bykova, O.A. Bayukov, V.S. Zhigalov, I.A. Tambasov, S.M. Zharkov, A.A. Matsynin, G.N. Bondarenko. J. Alloys Compd., 636, 223 (2015). DOI: 10.1016/j.jallcom.2015.02.012
  12. S.A. Gridnev, Yu.E. Kalinin, A.V. Sitnikov, O.V. Stogney. Nelineynye yavleniya v nano- i mikrogeterogennykh sistemakh (Binom, Laboratoriya znaniy, M., 2012) (in Russian)
  13. N.T. Gladkikh, S.V. Dukarov, A.P. Kryshtal, V.I. Larin, V.N. Sukhov, S.I. Bogatyrenko. Poverkhnostnye yavleniya i fazovye prevrashcheniya v kondensirovannykh plenkakh, pod red. N.T. Gladkikh (Kharkov: KhNU im. V.N. Karazina, 2004), s. 276
  14. P. Scherer. Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-Physikalische Klasse, 2, 98 (1918)
  15. Yu.E. Kalinin, A.V. Sitnikov, O.V. Stogney. Transportnye svoistva nanokompositov metall-dielektrik (Vestnik VGTU, 2007), t. 3 (11), s. 6-17
  16. I.V. Zolotukhin, Yu.E. Kalinin, O.V. Stogney. Novye napravleniya fizicheskogo materialovedeniya: Uchebnoe posobie (Isd-vo Voronezhskogo gos. un-ta, Voronezh, 2000) (in Russian)
  17. A.P. Babichev, N.A. Babushkina, A.M. Bratkovsky, M.E. Brodov, M.V. Bystrov, B.V. Vinogradov, L.I. Vinokurova, E.B. Gelman, A.P. Geppe, I.S. Grigoriev, K.G. Gurtovoy, V.S. egorov, A.V. Eletsky, L.K. Zarembo, V.Yu. Ivanov. Fizicheskie velichiny: Spravochnik, pod red. I.S. Grigor'eva, E.Z. Melikhova (Energoatomizdat, M., 1991) (in Russian)
  18. V.A. Belousov, Yu.E. Kalinin, A.V. Sitnikov. Phys. Solid State, 49 (10), 1848 (2007) DOI: 10.1134/S1063783407100071
  19. N.F. Mott, E.A. Davies. Electron Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru