Molecular dynamics study of reversible relaxation of compressive mechanical stress in polycrystalline metal films after the interruption of their deposition
A.S. Babushkin1, A.N. Kupriyanov1
1Valiev Institute of Physics and Technology of RAS, Yaroslavl Branch, Yaroslavl, Russia
Email: artem.yf-ftian@mail.ru

PDF
The results of MD simulation of polycrystalline metal films deposition are presented. Using Cr and Cu as an example, the influence of the deposited particle energy, the deposition rate, as well as the film material and temperature on the change in stress upon interruption and resuming deposition is studied. The simulation results showed that the reversible relaxation of compressive stress in polycrystalline films upon interruption of deposition is associated with the lateral displacement of atoms trapped in grain boundaries from the surface during deposition. This process of redistribution of atoms in grain boundaries leads to their more compact arrangement and proceeds in the same way in all layers of the film, both after and during deposition. The higher the mobility of atoms on the surface due to the type of material, temperature or energy of the deposited particles and the higher the rate of deposition, the greater the change in stress when it stops. No escape of atoms from grain boundaries back to the film surface was observed when deposition was interrupted. Keywords: residual mechanical stress, polycrystalline film growth, chromium, copper, molecular dynamics.
  1. V.K. Varadan, K.J. Vinoy, K.A. Jose. RF MEMS and Their Applications (John Wiley \& Sons, Ltd, Chichester, UK, 2002), DOI: 10.1002/0470856602
  2. J. Laconte, D. Flandre, J.P. Raskin. Micromachined thin-film Sensors for SOI-CMOS Co-integration (Springer Science \& Business Media, 2006), DOI: 10.1007/0-387-28843-0
  3. J.-H. Cho, M.D. Keung, N. Verellen, L. Lagae, V.V. Moshchalkov, P. Van Dorpe, D.H. Gracias. Small, 7 (14), 1943 (2011). DOI: 10.1002/smll.201100568
  4. A.V. Fadeev, K.V. Rudenko. Russ. Microelectron., 50, 311 (2021). DOI: 10.1134/S1063739721050024
  5. Z.C. Xia, J.W. Hutchinson. J. Mech. Phys. Solids, 48 (6-7), 1107 (2000). DOI: 10.1016/S0022-5096(99)00081-2
  6. K.A. Valiev, R.V. Goldstein, Y.V. Zhitnikov, T.M. Makhviladze, M.E. Sarychev. Russ. Microelectron., 38, 364 (2009). DOI: 10.1134/S106373970906002X
  7. M.W. Moon, J.W. Chung, K.R. Lee, K.H. Oh, R. Wang, A.G. Evans. Acta Mater., 50 (5), 1219 (2002). DOI: 10.1016/S1359-6454(01)00423-2
  8. S. Dutta, M. Imran, R. Pal, K.K. Jain, R. Chatterjee. Microsyst. Technol., 17, 1739 (2011). DOI: 10.1007/s00542-011-1360-5
  9. D. Karnaushenko, T. Kang, V.K. Bandari, F. Zhu, O.G. Schmidt. Adv. Mater., 32 (15), 1902994 (2020). DOI: 10.1002/adma.201902994
  10. D.D. Karnaushenko, D. Karnaushenko, D. Makarov, O.G. Schmidt. NPG Asia Mater., 7 (6), e188 (2015). DOI: 10.1038/am.2015.53
  11. D. Singh, A.T. Kutbee, M.T. Ghoneim, A.M. Hussain, M.M. Hussain. Adv. Mater. Technol., 3 (1), 1700192 (2018). DOI: 10.1002/admt.201700192
  12. D.-H. Weon, J.-H. Jeon, S. Mohammadi. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct, 25 (1), 264 (2007). DOI: 10.1116/1.2433984
  13. L.B. Freund, S. Suresh. Thin film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, 2004)
  14. R. Abermann, R. Kramer, J. Maser. Thin Solid Films, 52 (2), 215 (1978). DOI: 10.1016/0040-6090(78)90140-2
  15. C. Friesen, C.V. Thompson. Phys. Rev. Lett., 89 (12), 126103 (2002). DOI: 10.1103/PhysRevLett.89.126103
  16. R.W. Hoffman. Thin Solid Films, 34 (2), 185 (1976). DOI:10.1016/0040-6090(76)90453-3
  17. W.D. Nix, B.M. Clemens. J. Mater. Res., 14 (8), 3467 (1999). DOI: 10.1557/JMR.1999.0468
  18. L.B. Freund, E. Chason. J. Appl. Phys., 89 (9), 4866 (2001). DOI: 10.1063/1.1359437
  19. G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G.B. Thompson, E. Barthelf, G.L. Doll, C.E. Murray, C.H. Stoessel, L. Martinu. J. Vacuum Sci. Technol. A: Vacuum, Surfaces, and Films, 36 (2), 020801 (2018). DOI: 10.1116/1.5011790
  20. C. Friesen, S.C. Seel, C.V. Thompson. J. Appl. Phys., 95 (3), 1011 (2004). DOI: 10.1063/1.1637728
  21. J.W. Shin, E. Chason. Phys. Rev. Lett., 103 (5), 056102 (2009). DOI: 10.1103/PhysRevLett.103.056102
  22. A.R. Shugurov, A.V. Panin. Tech. Phys., 65, 1881 (2020). DOI: 10.1134/S1063784220120257
  23. A. Jamnig, N. Pliatsikas, K. Sarakinos, G. Abadias. J. Appl. Phys., 127 (4), 045302 (2020). DOI: 10.1063/1.5130148
  24. P. Jagtap, E. Chason. Acta Mater., 193, 202 (2020). DOI: 10.1016/j.actamat.2020.04.013
  25. A.L. Shull, F. Spaepen, J. Appl. Phys., 80 (11), 6243 (1996). DOI: 10.1063/1.363701
  26. R. Koch, D. Hu, A.K. Das. Phys. Rev. Lett., 94 (14), 146101 (2005). DOI: 10.1103/PhysRevLett.94.146101
  27. E. Chason. Thin Solid Films, 526, 1 (2012). DOI: 10.1016/j.tsf.2012.11.001
  28. E. Chason, P.R. Guduru. J. Appl. Phys., 119 (14), 191101 (2016). DOI: 10.1063/1.4949263
  29. C.W. Pao, S.M. Foiles, E.B. Webb, D.J. Srolovitz, J.A. Floro. Phys. Rev. Lett., 99 (3), 036102 (2007). DOI: 10.1103/PhysRevLett.99.036102
  30. C.W. Pao, S.M. Foiles, E.B. Webb, D.J. Srolovitz, J.A. Floro. Phys. Rev. B - Condens. Matter. Mater. Phys., 79 (22), 224113 (2009). DOI: 10.1103/PhysRevB.79.224113
  31. X. Zhou, X. Yu, D. Jacobson, G.B. Thompson. Appl. Surf. Sci., 469, 537 (2019). DOI: 10.1016/j.apsusc.2018.09.253
  32. A.S. Babushkin, A.N. Kupriyanov. J. Surf. Investig., 16 (6), 960 (2022). DOI: 10.1134/S1027451022060052
  33. S. Plimpton. J. Comput. Phys., 117 (1), 1 (1995). DOI: 10.1006/jcph.1995.1039
  34. A. Stukowski. Modelling and Simulation in Mater. Sci. Eng., 18 (1), 015012 (2009). DOI: 10.1088/0965-0393/18/1/015012
  35. S.M. Foiles, M.I. Baskes, M.S. Daw. Phys. Rev. B., 33 (12), 7983 (1986). DOI: 10.1103/PhysRevB.33.7983
  36. W.M. Choi, Y. Kim, D. Seol, B.J. Lee. Comput. Mater. Sci., 130, 121 (2017). DOI: 10.1016/j.commatsci.2017.01.002
  37. A.S. Babushkin, I.V. Uvarov, I.I. Amirov. Tech. Phys., 63, 1800 (2018). DOI: 10.1134/S1063784218120228
  38. A.S. Babushkin, R.V. Selyukov. Trudy FTIAN. Vol. 28: Kvantovye komp'yutery, mikro- i nanoelektronika: fizika, tekhnologiya, diagnostika i modelirovanie, ed. by T.M. Makhviladze (Nauka, M., 2019), p.112 (in Russian)
  39. W. Gruber, C. Baehtz, M. Horisberger, I. Ratschinski, H. Schmidt. Appl. Surf. Sci., 368, 341 (2016). DOI: 10.1016/j.apsusc.2016.02.015
  40. J.F. Ziegler, J.P. Biersack. The Stopping and Range of Ions in Matter. In: Bromley, D.A. (eds) ( Treatise on Heavy-Ion Science. Springer, Boston, MA. 1985), DOI: 10.1007/978-1-4615-8103-1_3

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru