Influence of matrix effects in the study of chemical elements in biological fluids by inductively coupled plasma mass spectrometry
Nurubeyli T.K. 1,2, Hashimov A.M. 1, Nuriyev K.Z 1, Hasanova S.I. 1, Jafar NSh1, İmamverdiyev O.E.3
1Azerbaijan Republic Ministry of Science and Education Institute of Physics, Baku, Azerbaijan
2Azerbaijan State Oil and Industry University, Baku, Azerbaijan
3Azerbaijan Diplomatic Academy, Baku, Azerbaijan
Email: t.nurubeyli@physics.science.az, a.hashimov@physics.science.az, kamilnuri@rambler.ru, sabina_hasanova@yahoo.com, omartarana@gmail.com

PDF
In the work, we studied the influence of matrix effects on the detection limit of individual components, and the dilution and mineralization method carried out a comparative analysis of the results of sample preparation. Inductively coupled plasma mass spectrometry studied a number of elements in solutions for analysis. It was found that the decrease in the throughput of a number of parts of the analyzer is a decrease in the diameters of the sampler and skimmer holes due to organic solvents. Two methods to reduce the influence of organic components of analyzed solutions on the results of the analysis were proposed -microwave decomposition and simple decomposition. We showed the advantage of simple dilution. However, in the analysis of biological fluids (mainly whole blood), oxidative mineralization can remove complex organic matrix and reduce biohazard. The article also considers the possibility of using an internal standard in order to obtain correct results by eliminating matrix effects. The article may be useful for an experimental analyst to assess (even increase) the degree of accuracy of the results obtained and allow doctors to restore important elements lost during dialysis in the patient's body. Keywords: Biological fluid, inductively coupled plasma mass spectrometry, spectral and non-spectral matrix effects, internal standard.
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru