Influence of matrix effects in the study of chemical elements in biological fluids by inductively coupled plasma mass spectrometry
Nurubeyli T.K. 1,2, Hashimov A.M. 1, Nuriyev K.Z 1, Hasanova S.I. 1, Jafar NSh1, İmamverdiyev O.E.3
1Azerbaijan Republic Ministry of Science and Education Institute of Physics, Baku, Azerbaijan
2Azerbaijan State Oil and Industry University, Baku, Azerbaijan
3Azerbaijan Diplomatic Academy, Baku, Azerbaijan
Email: t.nurubeyli@physics.science.az, a.hashimov@physics.science.az, kamilnuri@rambler.ru, sabina_hasanova@yahoo.com, omartarana@gmail.com

PDF
In the work, we studied the influence of matrix effects on the detection limit of individual components, and the dilution and mineralization method carried out a comparative analysis of the results of sample preparation. Inductively coupled plasma mass spectrometry studied a number of elements in solutions for analysis. It was found that the decrease in the throughput of a number of parts of the analyzer is a decrease in the diameters of the sampler and skimmer holes due to organic solvents. Two methods to reduce the influence of organic components of analyzed solutions on the results of the analysis were proposed -microwave decomposition and simple decomposition. We showed the advantage of simple dilution. However, in the analysis of biological fluids (mainly whole blood), oxidative mineralization can remove complex organic matrix and reduce biohazard. The article also considers the possibility of using an internal standard in order to obtain correct results by eliminating matrix effects. The article may be useful for an experimental analyst to assess (even increase) the degree of accuracy of the results obtained and allow doctors to restore important elements lost during dialysis in the patient's body. Keywords: Biological fluid, inductively coupled plasma mass spectrometry, spectral and non-spectral matrix effects, internal standard.
  1. A.A. Kozhin, B.M. Vladimirsky. Ekologiya cheloveka, 20 (9), 56 (2013). (in Russian) DOI: 10.17816/humeco17318
  2. B. Bocca, A. Alimonti, O. Senofonte, A. Pino, N. Violante, F. Petrucci, G. Sancesario, G. Forte, J. Neurological Sci., 248 (1-2), 23 (2006). DOI: 10.1016/j.jns.2006.05.007
  3. T.K. Nurubeyli, K.Z. Nuriev, Z.K. Nurubeyli. Tech. Phys., 64 (6), 909 (2019). DOI: 10.1134/S1063784219060148
  4. J.S. Park, J.Y. Ryu, H.-K. Jeon, Y.J. Cho, Y.A. Park, J.-J. Choi, J.-W. Lee, B.-G. Kim, D.-S. Bae. J. Gynecol. Oncol., 23 (3), 190 (2012). DOI: 10.3802/jgo.2012.23.3.190
  5. M. Kantola, R. Purkunen, P. KrOger, A. Tooming, J. Juravskaja, M. Pasanen, K. Seppanen, S. Saarikoski, T. Vartiainen. Environmental Res., 96 (1), 51 (2004). DOI: 10.1016/j.envres.2004.03.003
  6. R. Brodzka, M. Trzcinka-Ochocka, B. Janasik. Intern. J. Occupational Medicine and Environmental Health, 26 (2), 302 (2013). DOI: 10.2478/s13382-013-0106-2
  7. D. Dudek-Adamska, T. Lech, T. Konopka, P. Koscielniak. Biolog. Trace Element Research, 199, 2138 (2021). DOI: 10.1007/s12011-020-02347-w
  8. T.K. Nurubeyli. Tech. Phys., 65 (12), 1963 (2020). DOI: 10.1134/S1063784220120166
  9. T.K. Nurubeyli, Kh.N. Ahmadova. Intern. J. Modern Phys. B, 35 (05), 2150094 (2021). DOI: 10.1142/S0217984921500949
  10. T.K. Nurubeyli, Z.K. Nurubeyli, K.Z. Nuriyev. Tech. Phys., 62 (2), 305 (2017). DOI: 10.1134/S1063784217020220
  11. I. G.Venkatesh, K.S. Subramanian, J.R. Woittiez. Element Analysis of Biological Samples (CRC Press, USA, 1997), DOI: 10.1201/9781003068358
  12. C.S. Kira, A.M. Sakuma, N. Cruz Gouveia. J. Appl. Pharm. Sci., 4 (5) 39 (2014). DOI: 10.7324/JAPS.2014.40507
  13. K.L. Pei, D.W. Kinniburgh, L. Butlin, P. Faris, D. Lee, D.A. Marshall, M.C. Oliver, R. Parker, J.N. Powell, P. Railton, J. Smith. Clin. Biochem., 45 (10-11), 806 (2012). DOI: 10.1016/j.clinbiochem.2012.03.025
  14. I. Blas Bravo, R.S. Castro, N.L. Riquelme, C.T. Di az, D.A. Goyenaga. J. Clinic. Biochem., 21 (1), 14 (2007). DOI: 10.1016/j.jtemb.2007.09.017
  15. J. Rambouskova, A. Krskova, M. Slavi kova, M. vCejchanova, K. Wranova, B. Prochazka, M. vCerna. Arch. Gerontol. Geriat., 56 (2), 389 (2013). DOI: 10.1016/j.archger.2012.11.002
  16. S. D'Ilio, F. Forastiere, A. Draicchio, C. Majorani, F. Petrucci, N. Violante, O. Senofonte, Ann. Ist. Super Sanita, 49 (1), 24 (2013)
  17. N.B. Ivanenko, A.A. Ivanenko, N.D. Solovyev, A.E. Zeimal, D.V. Navolotskii, E.J. Drobyshev. Talanta, 116, 764 (2013). DOI: 10.1016/j.talanta.2013.07.079
  18. G. Li, J.D. Brockman, Sh.-W. Lin, C.C. Abnet, L.A. Schell, J.D. Robertson. Am. J. Anal. Chem., 3 (9), 646 (2012). DOI: 10.4236/ajac.2012.39084
  19. B. Bocca, R. Madeddu, Y. Asara, P. Tolu, J.A. Marchal, G. Forte. J. Trace Elem. Med. Biol., 25 (1), 19 (2011). DOI: 10.1016/j.jtemb.2010.12.004
  20. M. Krachler, K.J. Irgolic. J. Trace Elem. Med. Biol., 13 (3), 157 (1999). DOI: 10.1016/S0946-672X(99)80006-6
  21. E.H. Evans, J.J. Giglio. J. Anal. At. Spectrom., 8 (2), 1 (1993)
  22. T.W. May, R.H. Wiedmeyer. Atom. Spectrosc., 19 (5), 150 (1998)
  23. D.C. Gregoire, R.E. Sturgeon. Spectrochim. Acta. Part B, 48 (11), 1347 (1993)
  24. I.F. Seregina, S.Yu. Lanskaya, O.I. Okina, M.A. Bol'shov, S.M. Lyapunov, O.L. Chugunova, A.S. Foktova. J. Analyt. Chem., 65, 964 (2010). DOI: 10.1134/S1061934810090133
  25. W.J. McShane, R.S. Pappas, V. Wilson-McElprang, D. Paschal. Spectrochim. Acta Part B, 63 (6), 638 (2008). DOI: 10.1016/j.sab.2008.03.016
  26. D. Profrock. Appl. Spectr., 66 (8), 843 (2012). DOI: 10.1366/12-06681
  27. Ch. Agatemor, D. Beauchemin. Anal. Chim. Acta., 706 (1), 66 (2011). DOI: 10.1016/j.aca.2011.08.027
  28. B. Gulson, K. Mizon, A. Taylor, M. Korsch, J. Stauber, J.M. Davis, H. Louie, M. Wu, L. Antin. J. Trace Elem. Med. Biol., 22 (3), 206 (2008). DOI: 10.1016/j.jtemb.2008.04.001
  29. H.-Ch W. Stavros, R.K. Bonde, P.A. Fair. Mar. Pollut. Bull., 56 (6), 1215 (2008). DOI: 10.1016/j.marpolbul.2008.03.035
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru