Influence of matrix effects in the study of chemical elements in biological fluids by inductively coupled plasma mass spectrometry
Nurubeyli T.K.
1,2, Hashimov A.M.
1, Nuriyev K.Z
1, Hasanova S.I.
1, Jafar NSh
1, İmamverdiyev O.E.
31Azerbaijan Republic Ministry of Science and Education Institute of Physics, Baku, Azerbaijan
2Azerbaijan State Oil and Industry University, Baku, Azerbaijan
3Azerbaijan Diplomatic Academy, Baku, Azerbaijan
Email: t.nurubeyli@physics.science.az, a.hashimov@physics.science.az, kamilnuri@rambler.ru, sabina_hasanova@yahoo.com, omartarana@gmail.com
In the work, we studied the influence of matrix effects on the detection limit of individual components, and the dilution and mineralization method carried out a comparative analysis of the results of sample preparation. Inductively coupled plasma mass spectrometry studied a number of elements in solutions for analysis. It was found that the decrease in the throughput of a number of parts of the analyzer is a decrease in the diameters of the sampler and skimmer holes due to organic solvents. Two methods to reduce the influence of organic components of analyzed solutions on the results of the analysis were proposed -microwave decomposition and simple decomposition. We showed the advantage of simple dilution. However, in the analysis of biological fluids (mainly whole blood), oxidative mineralization can remove complex organic matrix and reduce biohazard. The article also considers the possibility of using an internal standard in order to obtain correct results by eliminating matrix effects. The article may be useful for an experimental analyst to assess (even increase) the degree of accuracy of the results obtained and allow doctors to restore important elements lost during dialysis in the patient's body. Keywords: Biological fluid, inductively coupled plasma mass spectrometry, spectral and non-spectral matrix effects, internal standard.
- A.A. Kozhin, B.M. Vladimirsky. Ekologiya cheloveka, 20 (9), 56 (2013). (in Russian) DOI: 10.17816/humeco17318
- B. Bocca, A. Alimonti, O. Senofonte, A. Pino, N. Violante, F. Petrucci, G. Sancesario, G. Forte, J. Neurological Sci., 248 (1-2), 23 (2006). DOI: 10.1016/j.jns.2006.05.007
- T.K. Nurubeyli, K.Z. Nuriev, Z.K. Nurubeyli. Tech. Phys., 64 (6), 909 (2019). DOI: 10.1134/S1063784219060148
- J.S. Park, J.Y. Ryu, H.-K. Jeon, Y.J. Cho, Y.A. Park, J.-J. Choi, J.-W. Lee, B.-G. Kim, D.-S. Bae. J. Gynecol. Oncol., 23 (3), 190 (2012). DOI: 10.3802/jgo.2012.23.3.190
- M. Kantola, R. Purkunen, P. KrOger, A. Tooming, J. Juravskaja, M. Pasanen, K. Seppanen, S. Saarikoski, T. Vartiainen. Environmental Res., 96 (1), 51 (2004). DOI: 10.1016/j.envres.2004.03.003
- R. Brodzka, M. Trzcinka-Ochocka, B. Janasik. Intern. J. Occupational Medicine and Environmental Health, 26 (2), 302 (2013). DOI: 10.2478/s13382-013-0106-2
- D. Dudek-Adamska, T. Lech, T. Konopka, P. Koscielniak. Biolog. Trace Element Research, 199, 2138 (2021). DOI: 10.1007/s12011-020-02347-w
- T.K. Nurubeyli. Tech. Phys., 65 (12), 1963 (2020). DOI: 10.1134/S1063784220120166
- T.K. Nurubeyli, Kh.N. Ahmadova. Intern. J. Modern Phys. B, 35 (05), 2150094 (2021). DOI: 10.1142/S0217984921500949
- T.K. Nurubeyli, Z.K. Nurubeyli, K.Z. Nuriyev. Tech. Phys., 62 (2), 305 (2017). DOI: 10.1134/S1063784217020220
- I. G.Venkatesh, K.S. Subramanian, J.R. Woittiez. Element Analysis of Biological Samples (CRC Press, USA, 1997), DOI: 10.1201/9781003068358
- C.S. Kira, A.M. Sakuma, N. Cruz Gouveia. J. Appl. Pharm. Sci., 4 (5) 39 (2014). DOI: 10.7324/JAPS.2014.40507
- K.L. Pei, D.W. Kinniburgh, L. Butlin, P. Faris, D. Lee, D.A. Marshall, M.C. Oliver, R. Parker, J.N. Powell, P. Railton, J. Smith. Clin. Biochem., 45 (10-11), 806 (2012). DOI: 10.1016/j.clinbiochem.2012.03.025
- I. Blas Bravo, R.S. Castro, N.L. Riquelme, C.T. Di az, D.A. Goyenaga. J. Clinic. Biochem., 21 (1), 14 (2007). DOI: 10.1016/j.jtemb.2007.09.017
- J. Rambouskova, A. Krskova, M. Slavi kova, M. vCejchanova, K. Wranova, B. Prochazka, M. vCerna. Arch. Gerontol. Geriat., 56 (2), 389 (2013). DOI: 10.1016/j.archger.2012.11.002
- S. D'Ilio, F. Forastiere, A. Draicchio, C. Majorani, F. Petrucci, N. Violante, O. Senofonte, Ann. Ist. Super Sanita, 49 (1), 24 (2013)
- N.B. Ivanenko, A.A. Ivanenko, N.D. Solovyev, A.E. Zeimal, D.V. Navolotskii, E.J. Drobyshev. Talanta, 116, 764 (2013). DOI: 10.1016/j.talanta.2013.07.079
- G. Li, J.D. Brockman, Sh.-W. Lin, C.C. Abnet, L.A. Schell, J.D. Robertson. Am. J. Anal. Chem., 3 (9), 646 (2012). DOI: 10.4236/ajac.2012.39084
- B. Bocca, R. Madeddu, Y. Asara, P. Tolu, J.A. Marchal, G. Forte. J. Trace Elem. Med. Biol., 25 (1), 19 (2011). DOI: 10.1016/j.jtemb.2010.12.004
- M. Krachler, K.J. Irgolic. J. Trace Elem. Med. Biol., 13 (3), 157 (1999). DOI: 10.1016/S0946-672X(99)80006-6
- E.H. Evans, J.J. Giglio. J. Anal. At. Spectrom., 8 (2), 1 (1993)
- T.W. May, R.H. Wiedmeyer. Atom. Spectrosc., 19 (5), 150 (1998)
- D.C. Gregoire, R.E. Sturgeon. Spectrochim. Acta. Part B, 48 (11), 1347 (1993)
- I.F. Seregina, S.Yu. Lanskaya, O.I. Okina, M.A. Bol'shov, S.M. Lyapunov, O.L. Chugunova, A.S. Foktova. J. Analyt. Chem., 65, 964 (2010). DOI: 10.1134/S1061934810090133
- W.J. McShane, R.S. Pappas, V. Wilson-McElprang, D. Paschal. Spectrochim. Acta Part B, 63 (6), 638 (2008). DOI: 10.1016/j.sab.2008.03.016
- D. Profrock. Appl. Spectr., 66 (8), 843 (2012). DOI: 10.1366/12-06681
- Ch. Agatemor, D. Beauchemin. Anal. Chim. Acta., 706 (1), 66 (2011). DOI: 10.1016/j.aca.2011.08.027
- B. Gulson, K. Mizon, A. Taylor, M. Korsch, J. Stauber, J.M. Davis, H. Louie, M. Wu, L. Antin. J. Trace Elem. Med. Biol., 22 (3), 206 (2008). DOI: 10.1016/j.jtemb.2008.04.001
- H.-Ch W. Stavros, R.K. Bonde, P.A. Fair. Mar. Pollut. Bull., 56 (6), 1215 (2008). DOI: 10.1016/j.marpolbul.2008.03.035
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.