Determination of the activation energy of the disproportionation reaction of amorphous GeOx film on quartz substrate using Raman spectroscopy
Fan Zhang1, Vergnat M.2, Volodin V.A. 1,3
1Novosibirsk State University, Novosibirsk, Russia
2Universite de Lorraine, CNRS, IJL, Nancy, France
3Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: 840003068@qq.com, volodin@isp.nsc.ru

PDF
Amorphous germanium nanoclusters were formed in the GeOx film on quartz as a result of the disproportionation reaction GeOx during furnace annealing. To determine the reaction activation energy, annealing was carried out at temperatures from 400 to 500oC. The appearance and growth of amorphous germanium nanoclusters were investigated using Raman spectroscopy. It was found that the position of the Raman scattering peak from amorphous germanium varied with the annealing time, which due to the change in the sizes of nanoclusters, i.e., the phonon localization model can be applied not only to germanium nanocrystals, but also to amorphous germanium clusters, in the case of their ultra-small sizes. In addition, it was found that the saturation time for the formation of amorphous germanium nanoclusters depends exponentially on the annealing temperature. The kinetics analysis of the nanocluster's formation was carried out within the framework of the Johnson-Mehl-Avrami-Kolmogorov model. The activation energy of the disproportionation reaction was obtained for the first time, which amounted to 1.0±0.1 eV. Keywords: germanium oxide, disproportionation reaction, JMAK model, activation energy.
  1. Z. Ni, S. Zhou, S. Zhao, W. Peng, D. Yang, X. Pi. Mater. Sci. Engineer.: R: Reports, 138, 85 (2019). DOI: 10.1016/j.mser.2019.06.001
  2. P.-Y. Hong, C.-H. Lin, I.-H. Wang, Y.-J. Chiu, B.-J. Lee, J.-C. Kao, C.-H. Huang, H.-C. Lin, T. George, P.-W. Li. Appl. Phys. A, 129, (2023). DOI: 10.1007/s00339-022-06332-z
  3. M.P. Gambaryan, G.K. Krivyakin, S.G. Cherkova, M. Stoffel, H. Rinnaert, M. Vergnat, V.A. Volodin. FTT 62, 434 (2020) (in Russian). DOI: 10.21883/ftt.2020.03.49010.600
  4. N. Shirahata. J. Solid State Chem., 214, 74 (2014). DOI: 10.1016/j.jssc.2013.10.021
  5. S. Takeoka, M. Fujii, S. Hayashi, K. Yamamoto. Phys. Rev. B, 58, 7921 (1998). DOI: 10.1103/PhysRevB.58.7921
  6. D. Marris-Morini, V. Vakarin, J.M. Ramirez, Q. Liu, A. Ballabio, J. Frigerio, M. Montesinos, C. Alonso-Ramos, X. Le Roux, S. Serna, D. Benedikovic, D. Chrastina, L. Vivien, G. Isella. Nanophotonics, 7, 1781 (2018). DOI: 10.1515/nanoph-2018-0113
  7. V. Reboud, A. Gassenq, J.M. Hartmann, J. Widiez, L. Virot, J. Aubin, K. Guilloy, S. Tardif, J.M. Fedeli, N. Pauc, A. Chelnokov, V. Calvo. Progress in Crystal Growth and Characterization Mater., 63, 1 (2017). DOI: 10.1016/j.pcrysgrow.2017.04.004
  8. D. Lv, M.L. Gordin, R. Yi, T. Xu, J. Song, Y.-B. Jiang, D. Choi, D. Wang. Advanced Functional Mater., 24, 1059 (2013). DOI: 10.1002/adfm.201301882
  9. J. Zhang, T. Yu, J. Chen, H. Liu, D. Su, Z. Tang, J. Xie, L. Chen, A. Yuan, Q. Kong. Ceramics Intern., 44, 1127 (2018). DOI: 10.1016/j.ceramint.2017.10.069
  10. Y. Xu, G. Han, H. Liu, Y. Wang, Y. Liu, J. Ao, Y. Hao. Nanoscale Research Lett., 14, Art. Num. 126 (2019). DOI: 10.1186/s11671-019-2958-2
  11. M. Ke, M. Takenaka, S. Takagi. ACS Appl. Electron. Mater., 1, 311 (2019). DOI: 10.1021/acsaelm.8b00071
  12. Q. Looker, M. Amman, K. Vetter. Nuclear Instrum. Methods in Phys. Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 777, 138 (2015). DOI: 10.1016/j.nima.2014.12.104
  13. Y. Li, H. Guo, Y. Yao, P. Dutta, M. Rathi, N. Zheng, Y. Gao, S. Sun, J.-H. Ryou, P. Ahrenkiel, V. Selvamanickam. Cryst. Eng. Comm., 20, 6573 (2018). DOI: 10.1039/c8ce01258j
  14. D. Lei, K.H. Lee, S. Bao, W. Wang, S. Masudy-Panah, C.S. Tan, E.S. Tok, X. Gong, Y.-C. Yeo. Appl. Phys. Lett., 111, 252103 (2017). DOI: 10.1063/1.5006994
  15. J. Zhao, L. Yang, J.A. McLeod, L. Liu. Scientific Reports, 5, Art. Num. 17779 (2015). DOI: 10.1038/srep17779
  16. M. Ardyanian, H. Rinnert, X. Devaux, M. Vergnat. Appl. Phys. Lett., 89, 011902 (2006). DOI: 10.1063/1.2218830
  17. S. Kai Wang, H.-G. Liu, A. Toriumi. Appl. Phys. Lett., 101, 061907 (2012). DOI: 10.1063/1.4738892
  18. V.A. Volodin, E.B. Gorokhov. Quantum Dots: Research, Technology and Applications (Nova Science Publishers Inc., NY., 2008), p. 333-372
  19. F. Zhang, V.A. Volodin, K.N. Astankova, G.N. Kamaev, I.A. Azarov, I.P. Prosvirin, M. Vergnat. Results in Chem., 4, 100461 (2022). DOI: 10.1016/j.rechem.2022.100461
  20. S. Rath, D. Kabiraj, D.K. Avasthi, A. Tripathi, K.P. Jain, M. Kumar, H.S. Mavi, A.K. Shukla. Nucl. Instrum. Methods in Phys. Res. Section B: Beam Interactions with Materials and Atoms, 263, 419 (2007). DOI: 10.1016/j.nimb.2007.07.018
  21. EB Gorokhov, V.V. Grischenko. Ellipsometriya: teoriya, metody primeneniya (Nauka, Novosibirsk, SO RAN, 1987), s. 147 -151. (in Russian)
  22. V.A. Volodin, D.V. Marin, V.A. Sachkov, E.B. Gorokhov, H. Rinnert, M. Vergnat. J. Experiment. Theor. Phys., 118, 65 (2014). DOI: 10.1134/s1063776114010208
  23. S.R.M. da Silva, G.K. Rolim, G.V. Soares, I.J.R. Baumvol, C. Krug, L. Miotti, F.L. Freire, M.E.H.M. da Costa, C. Radtke. Appl. Phys. Lett., 100, 191907 (2012). DOI: 10.1063/1.4712619
  24. O.V. Abramov, Ch.V. Kopetsky, A.V. Serebryakov (ed.). Fizicheskoe metallovedenie (per. s angl. Metallurgiya, M., 1987) (in Russian)
  25. V.A. Volodin, V.A. Gritsenko, A. Chin. Pisma v ZHTF, 44 37 (2018) (in Russian). DOI: 10.21883/pjtf.2018.10.46097.17223
  26. J.H. Parker, D.W. Feldman, M. Ashkin. Phys. Rev., 155, 712 (1967). DOI: 10.1103/physrev.155.712
  27. M. Wihl, M. Cardona, J. Tauc. J. Non-Crystalline Solids, 8--10, 172 (1972). DOI: 10.1016/0022-3093(72)90132-9
  28. M.H. Brodsky. V sb. Light Scattering in Solids, ser. Topics in Applied Physics, 205 (1975). DOI: 10.1007/978-3-540-37568-5_5
  29. V.V. Koryakina, E.Yu. Shits. Condensed Matter and Interphases, 22 (3), 327 (2020). DOI: 10.17308/kcmf.2020.22/2963
  30. A.N. Kolmogorov. Bull Acad. Sci. URSS, 3, 355 (1937)
  31. C.J. Meechan, J.A. Brinkman. Phys. Rev., 103, 1193 (1956).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru