Experimental study of mass transfer from the surface of a spherical water droplet assisted by spark discharge plasma channel
Shorstkii I. A. 1
1Kuban State Technological University, Krasnodar, Russia
Email: i-shorstky@mail.ru

PDF
The results of an experimental study of the water (vapor) molecules transfer from the surface of a spherical droplet towards the anode when a spark discharge plasma channel flows at atmospheric pressure air are presented. Distilled water and sodium chloride aqueous solution were used in the experiments. Using a high-speed amplitude amplifier with a monitor output, the discharge current and voltage waveforms were obtained for four experiments: a spark discharge, a spark discharge with a drop of distilled water, a spark discharge with a drop of sodium chloride aqueous solution and a spark discharge with a multi-pointed anode structure and a drop of distilled water. Microstructural and energy dispersion analysis data were obtained to confirm the mechanism of substance transfer and the location of water molecules in the electric current closure zone of the spark discharge plasma channel on an aluminum substrate of a flat anode. Keywords: spark discharge, plasma channel, mass transfer, water droplet, dissociation of molecules, ion channel, kangaroo effect.
  1. N. Sharma, G. Diaz, E. Leal-Quiros. Intern. J. Thermal Sci., 68, 119 (2013). DOI: 10.1016/j.ijthermalsci.2013.01.003
  2. A. Hens, G. Biswas, S. De. J. Chem. Phys., 143 (9), 094702 (2015). DOI: 10.1063/1.4929784
  3. J. Kornev, N. Yavorovsky, S. Preis, M. Khaskelberg, U. Isaev, B.N. Chen. Ozone: Sci. Engineer., 28 (4), 207 (2006). DOI: 10.1080/01919510600704957
  4. M. Damak, K.K. Varanasi. Sci. Adv., 4 (6), 5323 (2018). DOI: 10.1126/sciadv.aao5323
  5. A.A. Fedorets, L.A. Dombrovsky, E. Bormashenko, M. Nosonovsky. Intern. J. Heat Mass Transfer., 113, 712 (2019). DOI: 10.1016/j.ijheatmasstransfer.2018.12.160
  6. P.M. Ireland, C.A. Thomas, B.T. Lobel, G.B. Webber, S. Fujii, E.J. Wanless. Frontiers Chem., 6, 280 (2018). DOI: 10.3389/fchem.2018.00280
  7. D.N. Gabyshev, A.A. Fedorets, O. Klemm. Aerosol Sci. Technol., 54 (12), 1556 (2020). DOI: 10.1080/02786826.2020.1804522
  8. I. Bashkir, T. Defraeye, T. Kudra, A. Martynenko. Food Engineer. Rev., 12 (4), 473 (2020). DOI: 10.1007/s12393-020-09229-w
  9. I. Shorstkii, E. Koshevoi. Chem. Engineer., 3 (4), 91 (2019). DOI: 10.3390/chemengineering3040091
  10. B.B. Wang, X.D. Wang, Y.Y. Duan, M. Chen. Intern. J. Heat Mass Transfer., 73, 553 (2014). DOI: 10.1016/j.ijheatmasstransfer.2014.02.034
  11. V. Vancauwenberghe, P. Di Marco, D. Brutin. Colloids Surfaces A: Physicochem. Engineer. Aspects., 432, 50 (2013). DOI: 10.1016/j.colsurfa.2013.04.067
  12. Q. Brosseau, P.M. Vlahovska. Phys. Rev. Lett., 119 (3), 034501 (2017). DOI: 10.1103/PhysRevLett.119.034501
  13. I.A. Shorstkii, N. Yakovlev. Inorgan. Mater.: Appl. Research., 11 (5), 1236 (2020). DOI: 10.1134/S2075113320050317
  14. I.A. Shorstkii. Tech. Phys., 91 (8), 1 (2022). DOI: 10.21883/JTF.2021.08.51105.4-21
  15. A.V. Bernackij, V.N. Ochkin, O.N. Afonin. Fizika Plazmy, 41 (9), 767, (2015). (in Russ.)
  16. V.N. Ochkin. Spectroscopy of Low Temperature Plasma (WILLEY-VCH, Weinheim, 2009)
  17. Yu.P. Raizer. Fizika gazovogo razryada (Intellekt, M., 2009) (in Russian)
  18. E.K. Baksht, O.M. Blinova, M.V. Erofeev, V.I. Karelin, V.S. Ripenko, V.F. Tarasenko, M.A. Shulepov, Plasma Physics Reports, 42 (9), 876 (2016)
  19. I.A. Shorstky, M.D. Sosnin. Patent RF N 2789539. (in Russian)
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru