Hydrophobic ZnO-Based Substrates with Nanostructures of Gold and Silver for SERS Spectroscopy of Standard Organic Dye
Kozhina E.P.
1,2, Mokrousov M.D.
1, Bedin S.A.
2,3, Muslimov A.E.
3, Kanevsky V.M.
31Skolkovo Institute of Science and Technology, Moscow, Russia
2Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
3Federal Research Center "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
Email: liza.kozhina.99@mail.ru, bserg5@gmail.com, amuslimov@mail.ru
In this study, hydrophobic ZnO-based substrates covered with nanostructures of gold and silver are proposed as surface enhanced Raman scattering (SERS) active substrates for identifying the spectra of rhodamine 6G molecules using a portable spectrometer by Thermo Fisher Scientific. It is demonstrated that the use of a hydrophobic substrate contributes to the concentration of the investigated substance molecules at a focal point during solvent evaporation. Concentrating the molecules allows for measuring SERS spectra using compact spectrometers with a focusing area in the order of hundreds of microns. The mechanism enhancing the sensitivity of the SERS spectroscopy method is discussed, which is based on the formation of 'hot' spots on the hydrophobic surface with developed relief, modified by noble metals. Keywords: SERS, hydrophobicity, zinc oxide, silver, gold, rhodamine 6G.
- E.P. Kozhina, S.A. Bedin, N.L. Nechaeva, S.N. Podoynitsyn, V.P. Tarakanov, S.N. Andreev, A.V. Naumov, Appl. Sci., 11 (4), 1375 (2021). DOI: 10.3390/app11041375
- Y.-K. Kim, S.W. Han, D.-H. Min, ACS Appl. Mater. Interfaces, 4 (12), 6545 (2012). DOI: 10.1021/am301658p
- S. Nie, Science, 275 (5303), 1102 (1997). DOI: 10.1126/science.275.5303.1102
- H. Xu, E.J. Bjerneld, M. Kall, L. Borjesson, Phys. Rev. Lett., 83 (21), 4357 (1999). DOI: 10.1103/physrevlett.83.4357
- F. Xu, Y. Zhang, Y. Sun, Y. Shi, Z. Wen, Z. Li, J. Phys. Chem. C, 115 (20), 9977 (2011). DOI: 10.1021/jp201897j
- L. Xu, J. Ma, G. Wei, C. Gu, T. Jiang, Sensors Actuators B, 370, 132431 (2022). DOI: 10.1016/j.snb.2022.132431
- B. Bhushan, E.K. Her, Langmuir, 26 (11), 8207 (2020). DOI: 10.1021/la904585j
- A.D. Ninno, G. Ciasca, A. Gerardino, E. Calandrini, M. Papi, M.D. Spirito, L. Baldassarre, Phys. Chem. Chem. Phys., 17 (33), 21337 (2015). DOI: 10.1039/c4cp05023a
- A.E. Muslimov, A.Sh. Asvarov, N.S. Shabanov, V.M. Kanevsky, Tech. Phys. Lett., 46 (10), 954 (2020). DOI: 10.1134/S1063785020100107
- A.E. Muslimov, M.K. Gadzhiev, V.M. Kanevsky, Coatings, 11 (11), 1369 (2021). DOI: 10.3390/coatings11111369
- L. Yang, Y. Yang, Y. Ma, S. Li, Y. Wei, Z. Huang, N.V. Long, Nanomaterials, 7 (11), 398 (2017). DOI: 10.3390/nano7110398
- A. Hakonen, F. Wang, P.O. Andersson, H. Wingfors, T. Rindzevicius, M.S. Schmidt, H. Wu, ACS Sensors, 2 (2), 198 (2017). DOI: 10.1021/acssensors.6b00749
- F. Shao, J. Cao, Y. Ying, Y. Liu, D. Wang, X. Guo, H. Yang, Sensors, 20 (15), 4120 (2020). DOI: 10.3390/s20154120
- Y. Lu, G.L. Liu, L.P. Lee, Nano Lett., 5 (1), 5 (2005). DOI: 10.1021/nl048965u
- Q. Sun, Q.Y. Zhang, N. Zhou, L.Y. Zhang, Q. Hu, C.Y. Ma, C. Zhang, Z. Yi, Appl. Surf. Sci., 526, 146565 (2020). DOI: 10.1016/j.apsusc.2020.146565
- V. Perumal, U. Hashim, S.C.B. Gopinath, R. Haarindraprasad, W.-W. Liu, P. Poopalan, A.R. Ruslinda, PLOS One, 10 (12), e0144964 (2015). DOI: 10.1371/journal.pone.0144964
- T.T.H. Pham, X.H. Vu, N.D. Dien, T.T. Trang, T.T. Kim Chi, P.H. Phuonge, N.T. Nghia, RSC Adv., 12 (13), 7850 (2022). DOI: 10.1039/D2RA00620K
- D. Radziuk, H. Moehwald, Phys. Chem. Chem. Phys., 17 (33), 21072 (2015). DOI: 10.1039/c4cp04946b
- P. Hildebrandt, M. Stockburger, J. Phys. Chem., 88 (24), 5935 (1984). DOI: 10.1021/j150668a038
- D. Huang, J. Cui, X. Chen, Coll. Surf. A, 456, 100 (2014). DOI: 10.1016/j.colsurfa.2014.05.027
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.