Environmental measurement of atmospheric wind field based on a 1.5 μm all-fiber lidar source
Li X.1,2,3, Xu X.4, Zhang Z.3, Liu J.1,2, Bai X.1,2
1Institute of Laser and Optoelectronics, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China
2Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin, China
3TianJin JinHang Research Institute of Technical Physics, Tianjin, China
4National Key Laboratory of Electromagnetic Space Security, Tianjin, China
Email: lixintjuht@163.com
In this paper, we propose a 1.5 μm all-fiber lidar system for atmospheric wind field measurements. The lidar emission source adopts the master oscillator power amplifier 1532 nm single-frequency all-fiber structure with a repetition frequency of 10 kHz. The lidar output energy is 427 μJ, and the maximum peak power is 610 W at the pulse width of 700 ns. The system utilizes Doppler wind speed coherent measurement technology, and the lidar source modulates an 80 MHz intermediate frequency carrier. The maximum longitudinal height signal distance of the lidar system is 4.5 km for atmospheric wind field, and the measurement accuracy can be within the range of 10-2 level. The lidar system can be used to detect high-altitude or long-distance high-precision wind field information. At the same time, the system can play an important role in future atmospheric environment engineering research. Keywords: fiber laser, lidar, coherent Doppler measurement, wind field, vertical measurement. DOI: 10.61011/TPL.2023.08.56686.19536
- K. Liu, M. Sang, P. Zhu, X.L. Wang, T.-X. Yang, J. Optoelectron. Laser, 25 (2), 222 (2014)
- S. Yuan, T.-S. Wang, X.-F. Miao, X. Zhou, Y.-Z. Wei, Q.-L. Li, L.-L. Sun, J. Optoelectron. Laser., 24 (5), 874 (2013)
- Y. Dai, in Lidar technology (Electronic industry press, Beijing, 2010), p. 426.433
- R. Frehlich, S.M. Hannon, S.W. Henderson, Appl. Opt., 36 (15), 3491 (1997). DOI: 10.1364/AO.36.003491
- R.T. Menzies, R.M. Hardesty, Proc. IEEE, 77 (3), 449 (1989). DOI: 10.1109/5.24130
- L. Lombard, A. Azarian, K. Cadoret, P. Bourdon, D. Goular, G. Canat, V. Jolivet, Y. Jaouen, O. Vasseur, Opt. Lett., 36 (4), 523 (2011). DOI: 10.1364/OL.36.000523
- X. Jia, Prototype development of 1.55 μm coherent wind measuring laser of prototype development, doctoral dissertation (Chinese Academy of Sciences, 2015)
- Y. Zhou, Coherent doppler wind lidar key technology of research, master thesis (Aerospace Science and Technology Research Institute, 2017)
- S. Abdelazim, D. Santoro, M. Arend, F. Moshary, S. Ahmed, Sensors, 18 (12), 4170 (2018). DOI: 10.3390/s18124170
- B. Augere, M. Valla, A. Durecu, A. Dolfi-Bouteyre, D. Goular, F. Gustave, C. Planchat, D. Fleury, T. Huet, C. Besson, Atmosphere, 10 (9), 549 (2019). DOI: 10.3390/atmos10090549
- L. Meng, C. Pedersen, P.J. Rodrigo, Remote Sens., 13 (18), 3716 (2021). DOI: 10.3390/rs13183716
- B. Yue, S. Yu, M. Li, T. Wei, J. Yuan, Z. Zhang, J. Dong, Y. Jiang, Y. Yang, Z. Gao, H. Xia, Remote Sens., 14 (20), 5150 (2022). DOI: 10.3390/rs14205150
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.