Functional signal transformer based on a composite multiferroic
Krutyansky L. M. 1, Preobrazhensky V. L. 1
1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia

Nonlinear transfer functions of a voltage converter realized in a straintronic composite magnetic-piezoelectric structure within the area of spin reorientation (SR) are studied numerically and analytically. It is shown that at the SR critical point the transfer function has the shape of an inverse sigmoid. As the magnetizing field strength decreases, the function transforms into a reversible hysteresis loop. Under a pulsed impact, the threshold effect of generation of an opposite-polarity spike is displayed, which is followed by the system return to its initial state. When the input represents a sequence of short pulses critical with respect to the time of impact, the system switches between bistable spin states with inversion of the output voltage polarity. The qualitatively different functions of nonlinear voltage transform can be performed in one and the same structure by controlling the magnetic field strength and input signals' parameters. Keywords: magnetic-piezoelectric structure, transfer function, nonlinearity, threshold switching. DOI: 10.61011/TPL.2023.08.56683.19594
  1. O. Deperlioglu, U. Kose, Comput. Electr. Eng., 37, 392 (2011). DOI: 10.1016/j.compeleceng.2011.03.010
  2. Z. Li, X. Geng, J. Wang, F. Zhuge, Front. Neurosci., 15, 717947 (2021). DOI: 10.3389/fnins.2021.717947
  3. A. Mehonic, A.J. Kenyon, Front. Neurosci., 10, 57 (2016). DOI: 10.3389/fnins.2016.00057
  4. J. Woo, D. Lee, Y. Koo, H. Hwang, Microelectron. Eng., 182, 42 (2017). DOI: 10.1016/j.mee.2017.09.001
  5. K. Kondo, J.Y. Choi, J.U. Baek, H.S. Jun, S. Jung, T.H. Shim, J.G. Park, J. Phys. D: Appl. Phys., 51, 504002 (2018). DOI: 10.1088/1361-6463/aad592
  6. D.W. Kim, W.S. Yi, J.Y. Choi, K. Ashiba, J.U. Baek, H.S. Jun, J.J. Kim, J.G. Park, Front. Neurosci., 14, 309 (2020). DOI: 10.3389/fnins.2020.00309
  7. A.A. Bukharaev, A.K. Zvezdin, A.P. Pyatakov, Yu.K. Fetisov, Phys. Usp., 61, 1175 (2018). DOI: 10.3367/UFNe.2018.01.038279
  8. Y. Dusch, N. Tiercelin, A. Klimov, S. Giordano, V. Preobrazhensky, P. Pernod, J. Appl. Phys., 113, 17C719 (2013). DOI: 10.1063/1.4795440
  9. A. Klimov, N. Tiercelin, Y. Dusch, S. Giordano, T. Mathurin, P. Pernod, V. Preobrazhensky, A. Churbanov, S. Nikitov, Appl. Phys. Lett., 110, 222401 (2017). DOI: 10.1063/1.4983717
  10. A.A. Klimov, N. Tiercelin, V.L. Preobrazhensky, A.S. Sigov, P. Pernod, Bull. Russ. Acad. Sci. Phys., 83, 888 (2019). DOI: 10.3103/S1062873819070207
  11. N. Tiercelin, V. Preobrazhensky, P. Pernod, Appl. Phys. Lett., 92, 062904 (2008). DOI: 10.1063/1.2841656
  12. N. Tiercelin, Y. Dusch, S. Giordano, A. Klimov, V. Preobrazhensky, P. Pernod, in Nanomagnetic and spintronic devices for energy-efficient memory and computing, ed. by J. Atulasimha, S. Bandyopadhyay (John Wiley \& Sons, Ltd., 2016), ch. 8. DOI: 10.1002/9781118869239.ch8
  13. V.L. Preobrazhensky, L.M. Krutyansky, N. Tiercelin, P. Pernod, Tech. Phys. Lett., 46, 38 (2020). DOI: 10.1134/S1063785020010113
  14. F. Wang, L. Luo, D. Zhou, X. Zhao, H. Luo, Appl. Phys. Lett., 90, 212903 (2007). DOI: 10.1063/1.2743393
  15. A. Mazzamurro, Y. Dusch, P. Pernod, O. Bou Matar, A. Addad, A. Talbi, N. Tiercelin, Phys. Rev. Appl., 13, 044001 (2020). DOI: 10.1103/PhysRevApplied.13.044001
  16. X. Liu, J. Fu, Optik, 206, 164342 (2020). DOI: 10.1016/j.ijleo.2020.164342
  17. M. Takeuchi, T. Itoh, H. Nagasaka, Thin Solid Films, 51, 83 (1978). DOI: 10.1016/0040-6090(78)90215-8

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245