Synthesis of hafnium carbide powder in atmospheric arc plasma
Vassilyeva Yu. Z. 1, Povalyaev P. V. 1, Korchagina A. P.1, Yankovsky S. A. 1, Pak A. Ya. 1
1Tomsk Polytechnic University, Tomsk, Russia
Email: yzv1@tpu.ru

PDF
The paper presents a method, implemented for the first time, for the thermal synthesis of hafnium carbide powder using a DC arc discharge initiated in the open-air atmosphere. Based on the results of the series of experiments, the dependences of the current strength of the power source and the time of thermal treatment on the phase composition of the resulting powder product were established. Required parameters have been determined to ensure the synthesis of a powder containing ~98 mass.% of the cubic phase of hafnium carbide: heat treatment of the initial mixture containing the stoichiometric ratio of hafnium to carbon for 60 s at a current of 220 A. The size, shape, and substructure of particles of the synthesized carbide are characterized. The differential thermal analysis carried out in an oxidizing medium showed that the obtained hafnium carbide powder is oxidized most intensively at a temperature of ~700oC. Keywords: hafnium carbide, atmospheric plasma, electric arc reactor, self-shielding environment.
  1. C. Young, C. Zhang, A. Loganathan, P. Nautiyal, B. Boesl, A. Agarwal. Ceram. Int., 46 (10), 14625 (2020). DOI: 10.1016/j.ceramint.2020.02.263
  2. J. Cheng, J. Wang, X. Wang, H. Wang. Ceram. Int., 43, 7159 (2017). DOI: 10.1016/j.ceramint.2017.02.152
  3. R. He, L. Fang, T. Han, G. Yang, G. Ma, J. Liu, X. Chen, L. Xie, L. Liu, Q. Li, Y. Tang, H. Liang, Y. Zou, F. Peng. J. Eur. Ceram. Soc., 42, 5220 (2022). DOI: 10.1016/j.jeurceramsoc.2022.06.039
  4. X.-L. Qiu, X.-H. Gao, G. Liu. Thin Solid Films, 713, 1 (2020). DOI: 10.1016/j.tsf.2020.138349
  5. N. Ni, W. Hao, T. Liu, L. Zhou, F. Guo, X. Zhao, P. Xiao. Ceram. Int., 46, 23840 (2020). DOI: 10.1016/j.ceramint.2020.06.161
  6. D. Demirskyi, O. Vasylkiv, K. Yoshimi. J. Eur. Ceram. Soc., 41, 7442 (2021). DOI: 10.1016/j.jeurceramsoc.2021.08.038
  7. S. Tian, L. Zhou, Z. Liang, Y. Wang, Y. Yang, X. Qiang, Z. Qian. Ceram. Int., 45, 19513 (2019). DOI: 10.1016/j.ceramint.2019.06.039
  8. X. Luan, G. Liu, M. Tian, Z. Chen, L. Cheng. Composites Part B, 219, 1 (2021). DOI: 10.1016/j.compositesb.2021.108888
  9. J. Li, Y. Zhang, Y. Fu, T. Fei, Z. Xi. Ceram. Int., 44, 13335 (2018). DOI: 10.1016/j.ceramint.2018.04.165
  10. S. Tian, H. Li, Y. Zhang, S. Liu, Y. Fu, Y. Li, X. Qiang. J. Alloys Compd., 580, 407 (2013). DOI: 10.1016/j.jallcom.2013.04.170
  11. Y. Fu, Y. Zhang, J. Zhang, T. Li, G. Chen. Ceram. Int., 46, 16142 (2020). DOI: 10.1016/j.ceramint.2020.03.168
  12. N. Patran, N. Al Nasiri, D.D. Jayaseelan, W.E. Lee. Ceram. Int., 42, 1959 (2016). DOI: 10.1016/j.ceramint.2015.09.166
  13. Q. Wen, Z. Yu, R. Riedel, E. Ionescu. J. Eur. Ceram. Soc., 40, 3499 (2020). DOI: 10.1016/j.jeurceramsoc.2020.03.067
  14. J.-S. Kim, S.J. Lee, L. Feng, L. Silvestroni, D. Sciti, S.-H. Lee. J. Eur. Ceram. Soc., 40, 1801 (2020). DOI: 10.1016/j.jeurceramsoc.2019.12.051
  15. Y. Fu, Y. Zhang, J. Zhang, G. Chen, T. Li. Corros. Sci., 185, 1 (2021). DOI: 10.1016/j.corsci.2021.109443
  16. Y. Fu, Y. Zhang, H. Chen, X. Yin, J. Zhang, J. Sun, Q. Fu. Corros. Sci., 195, 1 (2022). DOI: 10.1016/j.corsci.2021.110015
  17. Y.-H. Wu, L. Ye, Y.-N. Sun, W.-J. Han, T. Zhao. Chin. J. Polym. Sci., 39, 659 (2021). DOI: 10.1007/s10118-021-2566-3
  18. Y. Fu, Y. Zhang, X. Yin, L. Han, Q. Fu, H. Li, R. Riedel. J. Mater. Sci. Technol., 129, 163 (2022). DOI: 10.1016/j.jmst.2022.04.037
  19. A.M. Abdelkader, D.J. Fray. J. Eur. Ceram. Soc., 32, 4481 (2012). DOI: 10.1016/j.jeurceramsoc.2012.07.010
  20. D. Lu, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, Z. Fu. Ceram. Int., 42, 8108 (2016). DOI: 10.1016/j.ceramint.2016.02.012
  21. L. Feng, S.-H. Lee, H. Wang, H.-S. Lee. J. Eur. Ceram. Soc., 35, 4073 (2015). DOI: 10.1016/j.jeurceramsoc.2015.08.004
  22. B. Matovic, B. Babic, D. Bucevac, M. Cebela, V. Maksimovic, J. Pantic, M. Miljkovic. Ceram. Int., 39, 719 (2013). DOI: 10.1016/j.ceramint.2012.06.083
  23. B.B. Bokhonov, D.V. Dudina. Ceram. Int., 43, 14529 (2017). DOI: 10.1016/j.ceramint.2017.07.164
  24. G.P. Kochanov, I.A. Kovalev, A.I. Ogarkov, S.V. Shevtsov, A.A. Konovalov, A.A. Ashmarin, A.V. Shokod'ko, A.I. Sitnikov, S.S. Strel'nikova, A.S. Chernyavskii, K.A. Solntsev. Inorg. Mater. Appl. Res., 13 (5), 1376 (2022). DOI: 10.1134/S2075113322050203
  25. S. Tian, H. Li, Y. Zhang, S. Zhang, Y. Wang, J. Ren, X. Qiang. J. Cryst. Growth, 384, 44 (2013). DOI: 10.1016/j.jcrysgro.2013.09.016
  26. A. Pak, A. Ivashutenko, A. Zakharova, Y. Vassilyeva. Surf. Coat. Technol., 387 (2020). DOI: 10.1016/j.surfcoat.2020.1255546
  27. A.Ya. Pak, I.I. Shanenkov, G.Y. Mamontov, A.I. Kokorina. Int. J. Refract. Met. Hard Mater., 93, 1 (2020). DOI: 10.1016/j.ijrmhm.2020.105343
  28. Y. Su, H. Wei, T. Li, H. Geng, Y. Zhang. Mater. Res. Bull., 50, 23 (2014). DOI: 10.1016/j.materresbull.2013.10.013
  29. J. Berkmans, M. Jagannatham, R. Reddy, P. Haridoss. Diamond \& Relat. Mater., 55, 12 (2015). DOI: 10.1016/j.diamond.2015.02.004
  30. J. Zhao, L. Wei, Z. Yang, Y. Zhang. Physica E, 44, 1639 (2012). DOI: 10.1016/j.physe.2012.04.010
  31. J. Zhao, Y. Su, Z. Yang, L. Wei, Y. Wang, Y. Zhang. Carbon, 58, 92 (2013). DOI: 10.1016/j.carbon.2013.02.036
  32. B. Mahesh, K. Sairam, J.K. Sonber, T.S.R.C. Murthy, G.V.S. Nageswara Rao, T. Srinivasa Rao, J.K. Chakravartty. Int. J. Refract. Met. Hard Mater., 52, 66 (2015). DOI: 10.1016/j.ijrmhm.2015.04.035
  33. B. Predel. B-Ba-C-Zr. 1--3 (Springer, 1992)
  34. J. Cheng, J. Wang, X. Wang, H. Wang. Ceram. Int., 43, 7159 (2017). DOI: 10.1016/j.ceramint.2017.02.152
  35. S. Tian, H. Li, Y. Zhang, J. Ren, X. Qiang, S. Zhang. Appl. Surf. Sci., 305, 697 (2014). DOI: 10.1016/j.apsusc.2014.03.175
  36. S.K Sarkar., A.D. Miller, J.I. Mueller. J. Am. Ceram. Soc., 55 (12), 628 (1972). DOI: 10.1111/j.1151-2916.1972.tb13457.x
  37. Y.W. Yoo, U.H. Nam, Y. Kim, H.I. Lee, J.K. Park, E. Byon. Appl. Sci. Convergence Technol., 30 (1), 21 (2021). DOI: 10.5757/ASCT.2021.30.1.21
  38. Y. Fu, Y. Zhang, J. Zhang, G. Chen, T. Li. Corros. Sci., 185, 109443 (2021). DOI: 10.1016/j.corsci.2021.109443
  39. D. Demirskyi, O. Vasylkiv, K. Yoshimi. J. Eur. Ceram. Soc., 41 (15), 7442 (2021). DOI: 10.1016/j.jeurceramsoc.2021.08.038
  40. Y. Jiang, D. Ni, Q. Ding, B. Chen, X. Chen, Y. Kan, S. Dong. RSC Adv., 8 (69), 39284 (2018). DOI: 10.1039/C8RA08123A
  41. A.Y. Pak, G.Y. Mamontov, K.V. Slyusarskiy, K.B. Larionov, S.A. Yankovsky, D.V. Gvozdyakov, V.E. Gubin, R.S. Martynov. Waste Biomass Valorization, 12 (10), 5689 (2021). DOI: 10.1007/s12649-021-01399-w
  42. S. Shimada. Solid State Ionics, 141, 99 (2001). DOI: 10.1016/S0167-2738(01)00727-5

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru