Luminescent spectroscopy of phosphates doped with Pr3+ ions, irradiated with fast electrons and reactor neutrons
Kiselev S. A. 1, Pustovarov V. A. 1, Trofimova E. S. 1,2, Petrova M. O.3
1Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
2Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
3Joint Institute for Nuclear Research, Dubna, Russia
Email: sviat-kiselev@yandex.ru, v.a.pustovarov@urfu.ru, trofimova.e.s@yandex.ru, mbelova@jinr.ru

PDF
This paper reports the spectroscopic properties of phosphates KLuP2O7, Sr9Sc(PO4)7, K3Lu(PO4)2, doped with Pr3+ ions. Photoluminescence (PL) spectra under selective excitation with UV photons, PL excitation spectra, and decay kinetics of pulsed cathodoluminescence are studied. Recordings of luminescence spectra were done with non-irradiated samples and after their irradiation with fast electrons (E=10 MeV) or fast reactor neutrons. Three typical channels of electronic excitations radiative relaxation have been identified: interconfigurational d-f transitions, intraconfigurational d-f transitions in Pr3+ ions and luminescence associated with defects. After irradiation, significant changes in the luminescence characteristics were observed: a redistribution of the intensity of the intraconfigurational f-f transitions, an increase in the luminescence yield of defects and the manifestation of new emission centers. The formation of radiation-induced defects presumably occurs due to the formation of complexes consisting of phosphorus and oxygen atoms. Keywords: phosphates, luminescence, d-f-transitions, f-f-transitions, energy transfer, radiation-induced defects. DOI: 10.61011/EOS.2023.05.56507.62-22
  1. A.M. Srivastava. J. Lumin., 169, 445 (2016). DOI: 10.1016/j.jlumin.2015.07.001
  2. V. Gorbenko, E. Zych, T. Voznyak, S. Nizankovskiy, T. Zorenko, Yu. Zorenko. Opt. Mater., 66, 271 (2017). DOI: 10.1016/j.optmat.2017.02.00
  3. N. Kristianpoller, D. Weiss, N. Khaidukov, V.N. Makhov, R. Chen. Rad. Meas., 43 (2), 245 (2008). DOI: 10.1016/j.radmeas.2007.11.001
  4. M. Nikl, V.V. Laguta, A. Vedda. Phys. Status Solidi B, 245, 1701 (2008). DOI: 10.1002/pssb.200844039
  5. M. Nikl, H. Ogino, A. Yoshikawa, E. Mihokova, J. Pejchal, A. Beitlerova, A. Novoselov, T. Fukuda. Chem. Phys. Lett., 410, 218 (2005). DOI: 10.1016/j.cplett.2005.04.115
  6. I. Carrasco, K. Bartosiewicz, F. Piccinelli, M. Nikl, M. Bettinelli. J. Lumin., 189, 113 (2017). DOI: 10.1016/j.jlumin.2016.08.022
  7. V.A. Pustovarov, A.N. Razumov, D.I. Vyprintsev. Phys. Solid State, 56, 347 (2014). DOI: 10.1134/S1063783414020267
  8. D. Wisniewski, A.J. Wojtowicz, W. Drozdowski, J.M. Farmer, L.A. Boatner. J. Alloy Compd., 380, 191 (2004). DOI: 10.1016/j.jallcom.2004.03.042
  9. A. Zych, M. de Lange, C. d. M. Donega, A. Meijerink. J. Appl. Phys., 112, 013536 (2012). DOI: 10.1063/1.4731735
  10. V.A. Pustovarov, K.V. Ivanovskikh, S.A. Kiselev, E.S. Trofimova, S. Omelkov, M. Bettinelli. Opt. Mat., 108, 110234 (2020). DOI: 10.1016/j.optmat.2020.110234
  11. K.V. Ivanovskikh, V.A. Pustovarov, S. Omelkov, M. Kirm, F. Piccinelli, M. Bettinelli. J. Lumin., 230, 117749 (2021). DOI: 10.1016/j.jlumin.2020.117749
  12. M. Trevisani, K. Ivanovskikh, F. Piccinelli, M. Bettinelli. Zeitschrift fur Naturforschung B, 69, 205 (2014). DOI: 10.5560/znb.2014-3260
  13. V.A. Pustovarov, K.V. Ivanovskikh, Yu.E. Khatchenko, V.Yu. Ivanov, M. Bettinelli, Q. Shi. Phys. Solid State, 61 (5), 867--871 (2019). DOI: 10.21883/FTT.2019.05.47582.12F
  14. V.A. Pustovarov, E.I. Zinin, A.L. Krymov, B.V. Shulgin. Rev. Sci. Instrum., 63, 3524 (1992). DOI: 10.1063/1.1143760
  15. E. Radzhabov, V. Nagirnyi. In: IOP Conf. Series: Mat. Sci. Eng. (IOP Publishing, 2010), vol. 15 (1), p. 012029. DOI: 10.1088/1757-899X/15/1/012029
  16. V.A. Pustovarov, K.V. Ivanovskikh, Yu.E. Khatchenko, V.Yu. Ivanov, M. Bettinelli, Q. Shi. Phys. Solid State, 61, 758--762 (2019). DOI: 10.1134/S1063783419050275
  17. K. Kanaya, S. Okayama. J. Phys. D: Appl. Phys., 5 (1), 43 (1972). DOI: 10.1088/0022-3727/5/1/308
  18. M.O. Petrova, M.V. Bulavin, A.D. Rogov, A. Yskakov, A.V. Galushko. Instrum. Exp. Tech., 65, 371 (2022). DOI: 10.1134/S0020441222030046
  19. S. Girard, A. Alessi., N. Richard, L. Martin-Samos, V. de Michele. Rev. Phys., 4, 100032 (2019). DOI: 10.1016/j.revip.2019.100032
  20. G. Origlio, F. Messina, M. Cannas, R. Boscaino, S. Girard, A. Boukenter, Y. Ouerdane. Phys. Rev. B, 80, 205208 (2009). DOI: 10.1103/PhysRevB.80.205208
  21. A.R. Silin, A.N. Trukhin. Point defects and electronic excitations in crystalline and glassy SiO2 (Zinatne, Riga, 1985)
  22. L. Skuja. J. Non-Cryst. Solids, 239 (1-3), 16 (1998). DOI: 10.1016/s0022-3093(98)00720-0
  23. V.A. Pustovarov, A.F. Zatsepin, V.S. Cheremnykh, A.A. Syrtsov, S.O. Cholakh. Radiat. Eff. Defects Solids, 157 (6-12), 751 (2002). DOI: 10.1080/10420150215800
  24. A.N. Sreeram, L.W. Hobbs, N. Bordes, R.C. Ewing. Nucl. Instr. And Meth. B, 116 (1-4), 126 (1996). DOI: 10.1016/0168-583X(96)00022-5

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru