Optical and laser performance of Yb:YSAG ceramics
Zmykhov V. Yu.1, Guriev D.A.1, Tsvetkov V. S. 1, Dobretsova E. A. 1, Pyrkov Yu. N. 1, Kuznetsov S. V. 1, Nikova M. S. 2, Tarala V. A.2, Vakalov D. S. 2, Kravtsov A. A. 2, Tsvetkov V. B. 1
1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
2Scientific and Laboratory Complex Clean Room, North Caucasus Federal University, Stavropol, Russia
Email: vadimzhmykhov56@gmail.com, Vadimzhmykhov56@gmail.com

PDF
8.3(3) at.% Yb : YSAG ceramics (Y2.55Yb0.25Sc1.00Al4.2O12) have been prepared via solid solution powder sintering. The optical and lasing characteristics have been successfully studied. Lasing was obtained on the basis of Yb:YSAG ceramics and the characteristics of laser radiation were studied at different transmittances of the output mirror of the resonator. The maximum lasing power was 1.8 W at 3.6 W of absorbed pumping in the quasi-cw generation mode. The maximum differential efficiency was 57% for a mirror with a transmittance of 14.5%. Keywords: Optical ceramics, ytterbium, luminescence, laser generation, radiative lifetimes, rare-earth elements, lasing output power. DOI: 10.61011/EOS.2023.05.56506.68-22
  1. A. Ikesue, T. Kinoshita, K. Kamata , K. Yoshida. J. Am. Ceram. Soc., 78(4), 1033-1040 (1995). DOI: 10.1111/j.1151-2916.1995.tb08433.x
  2. M. KuvcDera, P. Hasa, J. Hakenova. J. Alloys Compd., 451, 146-148 (2008). DOI: 10.1002/pssr.201307256
  3. A. Ikesue, Y.L. Aung, J. Wang. Progress in Quantum Electronics, 100416, 1-34 (2022). DOI: 10.1016/j.pquantelec.2022.100416
  4. A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida. J. Am. Ceram. Soc., 78(4), 1033-40 (1995). DOI: 10.1111/j.1151-2916.1995.tb08433.x
  5. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A.A. Kaminskii, H. Yagi, T. Yanagitani. Appl. Phys. B., 71, 469-473 (2000). DOI: 10.1007/s003400000394
  6. J. Saikawa, Y. Sato, T. Taira, A. Ikesue. Opt. Mater., 29, 1283-1288 (2007). DOI: 10.1016/ j. optmat.2006.01.031
  7. Y. Sato, T. Taira, A. Ikesue. J. Appl. Phys., 42, 5071-5074 (2003). DOI: 10.1143/JJAP.42.5071
  8. J. Dong, K. Ueda, A. Kaminskii. Opt. Express, 16, 5241-5251 (2008). DOI: 10.1364/oe.16.005241
  9. F. Cornacchia, R. Simura, A. Toncelli, M. Tonelli, A. Yoshikawa , T. Fukuda. Opt. Mater., 30, 135-138 (2007). DOI: 10.1016/j. optmat.2006.11.029
  10. A.R. Reinberg, L.A. Riseberg, R.M. Brown, R.W. Wacker, W.C. Holton. Appl. Phys. Lett., 19, 11-13 (1971). DOI: 10.1063/1.1653721
  11. M.S. Nikova, I.S. Chikulina, A.A. Kravtsov, V.A. Tarala, F.F. Malyavin, E.A. Evtushenko, L.V. Tarala, D .S. Vakalov, D.S. Kuleshov, V.A. Lapin, E.V. Medyanik, V.S. Zyryanov. Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki, 19, 630 (2019) (in Russian). DOI: 10.17586/2226-1494-2019-19-4-630-640
  12. A.S. Protasov, M.O. Senina, D.O. Lemeshev. Uspekhi v himii i himicheskoj tekhnologii, 34 (5), 80 (2020). (in Russian)
  13. M.S. Nikova, V.A. Tarala, F.F. Malyavin, D.S. Vakalov et al Ceramics International, 47, 1772-1784 (2021). DOI: 10.1016/j.ceramint.2020.09.003
  14. R.D. Shannon. Acta Crystallographica, 32, Pages 751-767 (1976). DOI: 10.1107/S0567739476001551
  15. G.B. Lutts, A.L. Denisov, E.V. Zharikov, A.I. Zagumennyi, S.N. Kozlikin, S.V. Lavrishchev, S.A. Samoylova, Opt. Quantum Electron., 22, 269-281 (1990). DOI: 10.1007/BF02089015
  16. Alban Ferrier, Simon Ilas, Philippe Goldner, Anne Louchet-Chauvet, J. Lumin., 194, 116-122 (2018). DOI: 10.1016/j.jlumin.2017.09.056
  17. M.S. Nikova, V.A. Tarala, A.A. Kravtsov, I.S. Chikulina, D.S. Vakalov, L.V. Tarala, S.N. Kichuk, F.F. Malyavin, L.V. Kozhitov, S.V. Kuznetsov. Ceramics International, 48 (24), 36739-36747 (2022). DOI: 10.1016/j.ceramint.2022.08.235
  18. A.A. Kaminsky, L.K. Aminov, V.L. Ermolaev. Fizika i spektroskopiya lazernykh kristallov (Nauka, M., 1986). (in Russian)
  19. Jiro Saikawa, Yoichi Sato, Takunori Taira, Akio Ikesue. Optical Materials, 29 (10), 1283-1288 (2007). DOI: 10.1016/j.optmat.2006.01.031
  20. E.A. Radjabov, A.V. Samborsky. Izvestiya RAN. Ser. fiz. 81, 1173 (2017) (in Russian)
  21. C. Xingtao, W. Yiquan, W. Nian, Q. Jianqi, L. Zhongwen, Z. Qinghua, H. Tengfei, Z. Qiang, L. Tiecheng. J. Eur. Ceram. Soc., 38(4) 1957-1965 (2018). DOI: 10.1016/j.jeurceramsoc.2017.11.055
  22. Z. Lu, T. Lu, N. Wei, W. Zhang, B. Ma, J. Qi, Y. Guan, X. Chen, H. Wu, Y. Zhao. Optical Materials, 47, 292-296 (2015). DOI: 10.1016/j.optmat.2015.05.043
  23. N. Jiang, C. Ouynag, Y. Liu, W. Li, Y. Fu, T. Xie and Q. Liu. Opt. Mater., 95, 109203 (2019). DOI: 10.1016/j.optmat.2019.109203
  24. T. Kushida, E. Takushi, V. Oka., J. Lumin., 12(13), 723-727 (1976)
  25. V.P. Lebedev, A.K. Przhevyskii. FTT, 19, 1373-1376 (1977)
  26. M.S. Nikova, V.A. Tarala, F.F. Malyavin, D.S. Vakalov, V.A. Lapin, D.S. Kuleshov, A.A. Kravtsov, I.S. Chikulina, L.V. Tarala, E.A. Evtushenko, E.V. Medyanik, S.O. Krandievsky, A.V. Bogach, S.V. Kuznetsov, Ceramics International, 47 (2), 1772-1784 (2022). DOI: 10.1016/j.ceramint.2020.09.003
  27. T. Kushida, E. Takushi, V. Oka. J. Lumin., 12 (13). 723-727 (1976)
  28. V.P. Lebedev and A.K. Przhevuskii, FTT, 19, 1373-1376 (1977). (in Russian)
  29. M. Pollnau, M. Eichhorn. In: Nano-Optics: Principles Enabling Basic Research and Applications, ed by B. Di Bartolo, J. Collins, L. Silvestri. NATO Science for Peace and Security Series B: Physics and Biophysics (Springer, Dordrecht, 2017), p. 387. DOI: 10.1007/978-94-024-0850-8_19
  30. G.A. Bogomolova, D.N. Vylegzhanin, A.A. Kaminski. Eksp. Teor. Fiz., 69. 860-874 (1975)
  31. Jorg Korner, Mathias Kruger, Jurgen Reiter, Andreas Munzer, Joachim Hein, Opt. Soc. Am., 10, 2425-2438 (2020). DOI: 10.1364/OME.398740
  32. Umit Demirbas, Jelto Thesinga, Martin Kellert, Mikhail Pergament, Franz X. Kartner, Optical Materials, 112, (2021). DOI: 10.1016/j.optmat.2020.110792
  33. G. Toci, A. Pirri, B. Patrizi, Y. Feng, T. Xie, Z. Yang, J. Li, M. Vannini. Ceramics International, 46, 17252-17260 (2020). DOI: 10.1016/j.ceramint.2020.04.012
  34. J. Saikawa, Y. Sato, T. Taira, A. Ikesue. Appl. Phys. Lett., 85, 1898-1900 (2004). DOI:10.1063/1.1791339
  35. A. Pirri, G. Toci, J. Li, Y. Feng, T. Xie, Z. Yang, B. Patrizi, M. Vannini. Materials, 11(5), 837-845 (2018). DOI: 10.3390/ma11050837
  36. Y. Feng, G. Toci, A. Pirri, B. Patrizi, Z. Hu, J. Wei, H. Pan, X. Zhang, X. Li, S. Su, M. Vannini, J. Li. J. Am. Ceram. Soc., 9(5), 1-11 (2019). DOI: 10.1007/s40145-020-0403-8
  37. Y. Feng, G. Toci, A. Pirri, B. Patrizi, X. Chen, J. Wei, H. Pan, X. Zhang, X. Li, M. Vannini, J. Li. J. Alloys and Compounds, 815, 152637 (2020). DOI: 10.1016/j.jallcom.2019.152637
  38. V. Kushawaha, A. Banerjee, L. Major. Appl. Phys. B., 56, 239-242 (1993). DOI: 10.1007/BF00348632
  39. D. Findlay, R.A. Clay. Phys. Lett., 20, 277-278 (1966). DOI: 10.1016/0031-9163(66)90363-5
  40. Yaacob Mat Daud, Abd Rahman Tamuri, Noriah Bidin. J. Fiz. UTM, 3, 38-42 (2008).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru