Spectroscopy of divalent samarium in caesium iodide single crystals
Sofich D. O. 1, Shendrik R.Yu 1
1Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
Email: sofich@igc.irk.ru

PDF
The article describes the process and parameters of growing CsI : Sm2+ single crystals by the Czochralski method. Spectroscopic studies of the CsI : Sm2+ single crystal have been carried out; it has been established that samarium ions enter the caesium iodide single crystal in the divalent state. At room temperature, luminescence is observed corresponding to the 4f5d1-4f6 transitions of divalent samarium; on cooling, only radiative 4f6-4f6 transitions are observed. The temperature dependence of the luminescence has been measured, the barrier energy has been determined, and the decay times of the luminescence have been measured. Keywords: luminescence, halides, samarium, scintillators, single crystals. DOI: 10.61011/EOS.2023.05.56508.59-22
  1. M. Suta, C. Wickleder. J. Luminescence, 210, 210 (2019). DOI: 10.1016/j.jlumin.2019.02.031
  2. P. Dorenbos. Optical Materials: X, 1, 100021 (2019). DOI: 10.1016/j.omx.2019.100021
  3. A.A. Shalaev, R.Y. Shendrik, A.I. Rusakov, Y.V. Sokol'nikova, A.S. Myasnikova. Physic. Solid State, 61 (12), 2403 (2019). DOI: 10.1134/S1063783419120497
  4. D. Sofich, R. Shendrik, A. Rusakov, A. Shalaev, A. Myasnikova. AIP Conference Proceedings, 2392, 040004 (2021). DOI: 10.1063/5.0061794
  5. A. Shalaev, R. Shendrik, A. Rusakov, A. Bogdanov, V. Pankratov, K. Chernenko, A. Myasnikova. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 467, 17 (2020). DOI: 10.1016/j.nimb.2020.01.023
  6. W. Wolszczak, K.W. Kramer, P. Dorenbos. J. Luminescence, 222, 117101 (2020). DOI: 10.1016/j.jlumin.2020.117101
  7. A. Tuomela, M. Zhang, M. Huttula, S. Sakirzanovas, A. Kareiva, A.I. Popov, A.P. Kozlova, S. Assa Aravindh, W. Cao, V. Pankratov. J. Alloys and Compounds, 826, 154205 (2020). DOI: 10.1016/j.jallcom.2020.154205
  8. M. Runowski, P. Wozny, V. Lavin, S. Lis. Sensors and Actuators B: Chemical, 273, 585 (2018). DOI: 10.1016/j.snb.2018.06.089
  9. Z. Cao, X. Wei, L. Zhao, Y. Chen, M. Yin. ACS Applied Materials \& Interfaces, 8 (50), 34546 (2016). DOI: 10.1021/acsami.6b10917
  10. T.H. Quang Minh, N. H. Khanh Nhan, N.D. Quoc Anh, H.Y. Lee. J. Chinese Institute of Engineers, 40 (4), 313 (2017). DOI: 10.1080/02533839.2017.1318720
  11. W. Cheng, P.S. Liu, M.J. Ying, F.S. Zhang. Nuclear Science and Techniques, 33 (3), 1 (2022). DOI: 10.1007/s41365-022-01020-2
  12. V.V. Nagarkar, S.C. Thacker, V. Gaysinskiy, L.E. Ovechkina, S.R. Miller, S. Cool, C. Brecher. IEEE transactions on nuclear science, 56 (3), 565 (2009). DOI: 10.1109/TNS.2009.2016198
  13. R.H. Bartram, L.A. Kappers, D.S. Hamilton, A. Lempicki, C. Brecher, V. Gaysinskiy, V.V. Nagarkar. IEEE Transactions on Nuclear Science, 55 (3), 1232 (2008). DOI: 10.1109/TNS.2008.922833
  14. A. Rupasov, A. Shalaev, R. Shendrik. Crystal Growth \& Design, 20 (4), 2547 (2020). DOI: 10.1021/acs.cgd.9b01678
  15. M. Guzzi, G. Baldini. J. Luminescence, 6 (4), 270 (1973). DOI: 10.1016/0022-2313(73)90023-9
  16. M.N. Sundberg, H.V. Lauer, F.K. Fong. J. Chem. Phys., 62 (5), 1853 (1975). DOI: 10.1063/1.430669
  17. M. Karbowiak, P. Solarz, R. Lisiecki, W. Ryba-Romanowski. J. Luminescence, 195, 159 (2018). DOI: 10.1016/j.jlumin.2017.11.012
  18. A. Meijerink, G.J. Dirksen. J. Luminescence, 63 (4), 189 (1995). DOI: 10.1016/0022-2313(94)00064-J
  19. S.L. Walker, C.H. Drozdowski, J. Gharavi-Naeini, N.A. Stump. Appl. Spectrosc., 73 (5), 550 (2019). DOI: 10.1177/0003702818815180
  20. C.H. Drozdowski, J. Gharavi-Naeini, N.A. Stump. Appl. Spectrosc., 71 (7), 1684 (2017). DOI: 10.1177/0003702817694900
  21. P.A. Tanner. Chemical Society Reviews, 42 (12), 5090 (2013). DOI: 10.1039/C3CS60033E
  22. H.H. Lal, V.P. Verma. J. Physics C: Solid State Physics, 5 (10), 1038 (1972). DOI: 10.1088/0022-3719/5/10/008
  23. H. Vrielinck, D.G. Zverev, P. Leblans, J.P. Tahon, P. Matthys, F. Callens. Phys. Rev. B, 85 (14), 144119 (2012). DOI: 10.1103/PhysRevB.85.144119
  24. A. Gektin, N. Shiran, S. Vasyukov, A. Belsky, D. Sofronov. Opt. Mater., 35 (12), 2613 (2013). DOI: 10.1016/j.optmat.2013.07.029
  25. L.P. Smol'skaya, V.V. Dorokhova. J. Applied Spectroscopy, 52 (1), 29 (1990). DOI: 10.1007/BF00664775
  26. N. Mott, R. Gurney. UFN, 44 (3), 482 (1951). (in Russian)
  27. E. A. Radzhabov. Opt. Mater., 85, 127 (2018). DOI: 10.1016/j.optmat.2018.08.044
  28. A.A. Shalaev, R. Shendrik, A.S. Myasnikova, A. Bogdanov, A. Rusakov, A. Vasilkovskyi. Opt. Mater., 79, 84 (2018). DOI: 10.1016/j.optmat.2018.03.017

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru