Investigation of the relative reactivity of alkyl acetate vapors with respect to the components of a pulsed discharge plasma in air
Filatov I. E. 1, Uvarin V. V. 1, Kuznetsov D. L. 1
1Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
Email: fil@iep.uran.ru, uvv@iep.uran.ru, kdl@iep.uran.ru

PDF
A study was performed of the relative reactivity of vapors of a number of acetic acid esters (alkyl acetates) with respect to plasma components of a pulsed corona discharge with the voltage of 100 kV and duration of 40 ns. On model mixtures based on methyl-, ethyl-, propyl-, isopropyl-, isobutyl-, butyl-, and vinyl acetates with contents of 250-500 ppm in air and nitrogen, the relative reactivity parameters were obtained. The reactivity of acetic acid esters increases with an increase in the hydrocarbon substituent. The high reactivity of vinyl acetate is due to the double bond reaction with ozone. Keywords: corona discharge, acetic acid esters, alkyl acetates, vinyl acetate, non-equilibrium atmospheric-pressure plasma, air purification, volatile organic compounds. DOI: 10.61011/TPL.2023.06.56372.19540
  1. A.M. Vandenbroucke, R. Morent, N. De Geyter, C. Leys, J. Hazard. Mater., 195 (15), 30 (2011). DOI: 10.1016/J.JHAZMAT.2011.08.060
  2. S. Li, X. Dang, X. Yu, G. Abbas, Q. Zhang, L. Cao, Chem. Eng. J., 388, 124275 (2020). DOI: 10.1016/j.cej.2020.124275
  3. W.C. Chung, D.H. Mei, X. Tu, M.B. Chang, Catal. Rev. Sci. Eng., 61 (2), 270 (2019). DOI: 10.1080/01614940.2018.1541814
  4. C. Du, X. Gong, Y. Lin, J. Air Waste Manage. Assoc., 69 (8), 879 (2019). DOI: 10.1080/10962247.2019.1582441
  5. T. Guo, G. Cheng, G. Tan, L. Xu, Z. Huang, P. Cheng, Z. Zhou, Chemosphere, 264 (Pt 1), 128430 (2021). DOI: 10.1016/j.chemosphere.2020.128430
  6. C. Qin, M. Guo, C. Jiang, R. Yu, J. Huang, D. Yan, S. Li, X. Dang, Sci. Total Environ., 782, 146931 (2021). DOI: 10.1016/j.scitotenv.2021.146931
  7. I.E. Filatov, V.V. Uvarin, D.L. Kuznetsov, Tech. Phys., 63 (5), 680 (2018). DOI: 10.1134/S1063784218050079
  8. I.E. Filatov, V.V. Uvarin, V.V. Nikiforova, D.L. Kuznetsov, J. Phys.: Conf. Ser., 2064, 012094 (2021). DOI: 10.1088/1742-6596/2064/1/012094
  9. I.E. Filatov, V.V. Uvarin, D.L. Kuznetsov, Tech. Phys. Lett., 48 (14), 51 (2022). DOI: 10.21883/TPL.2022.14.55118.18924
  10. S.N. Rukin, Rev. Sci. Instrum., 91 (1), 011501 (2020). DOI: 10.1063/1.5128297
  11. I.E. Filatov, Yu.S. Surkov, D.L. Kuznetsov, Tech. Phys. Lett., 48 (7), 25 (2022). DOI: 10.21883/TPL.2022.07.54032.19210
  12. T. Shou, N. Xu, Y. Li, G. Sun, M.T. Bernards, Y. Shi, Y. He, Plasma Chem. Plasma Process., 39 (4), 863 (2019). DOI: 10.1007/s11090-019-09986-5
  13. I. Al Mulla, L. Viera, R. Morris, H. Sidebottom, J. Treacy, A. Mellouki, ChemPhysChem, 11 (18), 4069 (2010). DOI: 10.1002/cphc.201000404

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru