Effect of partial substitution of iron for group IV elements on the structure and superconducting properties of the Fe(Se0.2Te0.8)0.82 compound
V.A. Rusakov1, M.P. Volkov1
1Ioffe Institute, St. Petersburg, Russia

PDF
The structure and superconducting properties of the Fe1-x(A)x(Se0.2Te0.8)0.82 (x = 0.1, 0.2) compound, where A is Cu, Zn, Bi or Group IV elements (Pb, Sn, Ge), were studied. It was shown that the effect of substitution of some iron atoms on the structure and superconducting properties of the Fe(Se,Te) compound depends on whether a solid solution with a substituting element was formed. If complete dissolution of the replacement element occured (Cu, Zn), then a significant degradation of the superconducting properties was observed. If a separate chalcogenide phase was formed (substitution by Pb, Sn, Ge), then a slight change in the superconducting properties was observed. Such a slight change and even improvement in the superconducting properties upon precipitation of the chalcogenide phase can be associated with both the positive effect of an increase in the relative content of iron and a decrease in the number of iron atoms in the interstitial sites of the β-phase. The preservation of the superconducting properties of the Fe(Se,Te) compound with a small substitution of iron for group IV elements can be used to create wires based on Fe(Se,Te), since impurity chalcogenide particles can act as effective pinning centers. Keywords: Iron-based superconductor, FeSeTe, critical parameters, substitution, structure, electrical resistivity, magnetoresistance, pressure effect.
  1. F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, Ph.M. Wu, Y.-C. Lee, Y.-L. Huang, Y.-Y. Chu, D.-Ch. Yan, M.-K. Wu. PNAS, 105 (38), 14262 (2008). DOI: 10.1073/pnas.0807325105
  2. M.P. Volkov, B.A.T. Melekh, V.I. Bakharev, N.F. Kartenko. Tech. Phys. Lett., 36, 251 (2010). https://doi.org/10.1134/S1063785010030156
  3. V.A. Rusakov, B.A.-T. Melekha, M.P. Volkov. Tech. Phys., 65 (1), 63 (2020). DOI: 10.1134/S1063784220010223
  4. A. Kreisel, P.J. Hirschfeld, B.M. Andersen. Symmetry, 12, 1402 (2020). https://doi.org/10.3390/sym12091402
  5. A.V. Fedorchenko, G.E. Grechnev, V.A. Desnenko, A.S. Panfilov, S.L. Gnatchenko, V.V. Tsurkan, J. Deisenhofer, H.-A. Krug von Nidda, A. Loidl, D.A. Chareev, O.S. Volkova, A.N. Vasiliev. Low Temp. Phys., 37, 83 (2011). DOI: 10.1063/1.3552132
  6. S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata, K. Prassides. Phys. Rev. B, 80, 064506 (2009). DOI: https://doi.org/10.1103/PhysRevB.80.064506
  7. T.P. Ying, X.L. Chen, G. Wang, S.F. Jin, T.T. Zhou, X.F. Lai, H. Zhang, W.Y. Wang. Sci. Rep., 2, 426 (2012). DOI: 10.1038/srep00426
  8. J. Guo, Sh. Jin, G. Wang, Sh. Wang, K. Zhu, T. Zhou, M. He, X. Chen. Phys. Rev. B, 82, 180520(R) (2010). https://doi.org/10.1103/PhysRevB.82.180520
  9. M. Gursul, B. Ozcelik, M. Liu, A.I. Boltalin, I.V. Morozov. J. Alloys Comp. 777, 1074 (2019). DOI: 10.1016/j.jallcom.2018.11.076
  10. S.J. Sedlmaier, S.J. Cassidy, R.G. Morris, M. Drakopoulos, Ch. Reinhard, S.J. Moorhouse, D. O'Hare, P. Manuel, D. Khalyavin, S.J. Clarke. J. Am. Chem. Soc., 136 (2), 630 (2014). DOI: 10.1021/ja411624q
  11. D.J. Gawryluk, J. Fink-Finowicki, A. Wisniewski, R. Puzniak, V. Domukhovski, R. Diduszko, M. Kozlowski, M. Berkowski. Supercond. Sci. Technol., 24 (2011), 065011 (2012). (10pp). DOI: https://doi.org/10.1088/0953-2048/24/6/065011
  12. N. Chen, Y. Li, Z. Ma, H. Li. Mater. Lett., 175, 16 (2016). DOI: http://dx.doi.org/10.1016/j.matlet.2016.03.137
  13. N. Chen, Y. Liu, Z. Ma, H. Li, Md Shahriar Hossain. J. Alloys Comp., 633, 233 (2015). DOI: http://dx.doi.org/10.1016/j.jallcom.2015.01.288
  14. H. Hosono, A. Yamamoto, H. Hiramatsu, Y. Ma, Mater. Today, 21, 278 (2018). https://doi.org/10.1016/j.mattod.2017.09.006
  15. L. Wang, Y. Qi, Zh. Zhang, D. Wang, X. Zhang, Zh. Gao, Ch. Yao, Y. Ma. Supercond. Sci. Technol., 23 (2010) 054010 (5pp). DOI: https://doi.org/10.1088/0953-2048/23/5/054010
  16. C. Yao, C. Wang, X. Zhang, L. Wang, Z. Gao, D. Wang, Ch. Wang, Y. Qi, Y. Ma, S. Awaji, K. Watanabe. Supercond. Sci. Technol., 25, 035020 (2012). DOI: https://doi.org/10.1088/0953-2048/25/3/035020
  17. Y. Ma. Supercond. Sci. Technol., 25, 113001 (2012). DOI: 10.1088/0953-2048/25/11/113001
  18. Ch. Yao, Y. Ma. Supercond. Sci. Technol., 32, 023002 (2019). DOI: 10.1088/1361-6668/aaf351
  19. H. Lin, et al., Scripta Mater., 112, 128 (2016). http://dx.doi.org/10.1016/j.scriptamat.2015.09.031
  20. H. Chu, J. Li, Sh. Li, Y. Zhang, N. Wang, J. Wang, Y. Gao, H. Deng, X. Sun, D. Zheng. Sci. China Phys. Mech. Astron., 53, 1180 (2010). https://doi.org/10.1007/s11433-010-4049-3
  21. H. Chu, J. Li, Sh. Li, Y. Zhang, N. Wang, J. Wang, Y. Gao, H. Deng, X. Sun, D. Zheng. Sci. China Phys. Mech. Astron., 53, 1180 (2010). DOI: 10.1007/S11433-010-4049-3
  22. Z. Zajicek, S.J. Singh, H. Jones, P. Reiss, M. Bristow, A. Martin, A. Gower, A. McCollam, A.I. Coldea. Phys. Rev. B, 105, 115130. (2022). https://doi.org/10.1103/PhysRevB.105.115130
  23. M.P. Volkov, B.T. Melekh, R.V. Parfeniev, N.F. Kartenko, L.L. Regel, A.M. Turchaninov, J. Crystal Growth, 119, 122 (1992). DOI: 10.1016/0022-0248(92)90211-Z
  24. J. Pietosa, D.J. Gawryluk, R. Puzniak, A. Wisniewski, J. Fink-Finowicki, M. Kozlowski, M. Berkowski. J. Phys.: Condens. Matter., 24, 265701 (2012). DOI: 10.1088/0953-8984/24/26/265701
  25. E. Martinez-Pineiro, R. Escudero. arXiv:1601.01417v1 [cond-mat.supr-con] (2016). DOI: https://doi.org/10.48550/arXiv. 1601.01417
  26. M.P. Volkov, B.A.-T. Melekh, V.I. Bakharev, N.F. Kartenko, D.D. Prokofiev. Tezisy 36 soveshchaniya po fizike nizkikh temperatur, s. 301
  27. T.J. Liu, X. Ke, B. Qian, J. Hu, D. Fobes, E.K. Vehstedt, H. Pham, J.H. Yang, M.H. Fang, L. Spinu, P. Schiffer, Y. Liu, Z.Q. Mao. Phys. Rev. B, 80, 174509 (2009). DOI: https://doi.org/10.48550/arXiv.0904.0824
  28. A.K. Yadav, A.D. Thakur, C.V. Tomy. Phys. Proced., 49, 109 (2013). DOI: 10.1016/j.phpro.2013.10.017

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru