Effect of sudden constriction of a flat duct on forced convection in a turbulent droplet-laden mist flow
Pakhomov M. A.1, Terekhov V. I.1
1Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: pakhomov@ngs.ru
Numerical modeling of the flow structure and heat transfer in a gas-droplet turbulent flow in a duct with forward-facing step is carried out. The two-dimensional RANS equations are used in the numerical solution. The Eulerian two-fluid approach is used for describing the flow dynamics and heat transfer in the gaseous and dispersed phases. The turbulence of the carrier phase is described using an elliptical Reynolds stress model with taking the presence of dispersed phase. It is shown that finely-dispersed droplets are involved in the separation recirculation motion of the gas phase. The addition of evaporating droplets to a single-phase turbulent flow in the forward-facing step leads to a significant intensification of heat transfer (more than 2 times) compared to a single-phase air flow, all other parameters being equal. This effect is enhanced with an increase in the initial mass fraction of the water droplets. Keywords: Numerical simulation, Reynolds stress transport model, forward-facing step, droplet evaporation, turbulence, heat transfer enhancement.
- V.I. Terekhov, T.V. Bogatko, A.Yu. Dyachenko, Ya.I. Smulsky, N.I. Yarygina, Heat transfer in subsonic separated flows (Springer, Cham, 2021)
- Yu.A. Bystrov, S.A. Isaev, N.A. Kudryavtsev, A.I. Leont'ev, Chislennoe modelirovanie vikhrevoi intensifikatsii teploobmena v paketakh trub (Sudostroenie, SPb., 2005) (in Russian)
- A.M. Levchenya, E.M. Smirnov, S.N. Trunova, Tech. Phys. Lett., 48 (2), 38 (2022). DOI: 10.21883/TPL.2022.02.53579.19020
- S.S. Sazhin, Droplets and sprays (Springer, Heidelberg, 2014)
- A. Graziani, M. Lippert, D. Uystepruyst, L. Keirsbulck, Int. J. Heat Fluid Flow, 67 (Pt A), 220 (2017). DOI: 10.1016/j.ijheatfluidflow.2017.08.009
- M.A. Pakhomov, V.I. Terekhov, Tech. Phys., 58 (2), 185 (2013). DOI: 10.1134/S1063784213020187
- M.A. Pakhomov, V.I. Terekhov, Water, 13 (17), 2333 (2021). DOI: 10.3390/w13172333
- K. Hishida, T. Nagayasu, M. Maeda, Int. J. Heat Mass Transfer, 38 (10), 1773 (1995). DOI: 10.1016/0017-9310(94)00308-I
- K.-T. Huang, Y.-H. Liu, Energies, 12 (19), 3785 (2019). DOI: 10.3390/en12193785
- A. Fadai-Ghotbi, R. Manceau, J. Boree, Flow Turbulence Combust., 81 (3) 395 (2008). DOI: 10.1007/s10494-008-9140-8
- J.R. Fessler, J.K. Eaton, J. Fluid Mech., 394, 97 (1999). DOI: 10.1017/S0022112099005741
- L.I. Zaichik, Phys. Fluids, 11 (6), 1521 (1999). DOI: 10.1063/1.870015
- R.V. Mukin, L.I. Zaichik, Int. J. Heat Fluid Flow, 33 (1), 81 (2012). DOI: 10.1016/j.ijheatfluidflow.2011.11.002
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.