Conductivity features of ZnO and NiO nanofiber composites
Martyshov M.N.1, Smirnova V.V.1, Ilin A.S.1,2, Platonov V.B.1, Forsh P.A.1,2, Kashkarov P.K.1,3
1Lomonosov Moscow State University, Moscow, Russia
2Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
3National Research Center “Kurchatov Institute”, Moscow, Russia
Email: mmartyshov@mail.ru

PDF
In this work, composites of ZnO and NiO nanofibers with n- and p-type conductivity, respectively, were studied. It is shown that the conductivity of the studied composites strongly depends on the arrangement of ZnO and NiO nanofibers. In the case of a mixture of ZnO and NiO nanofibers (with their random arrangement relative to each other and electrical contacts), conduction can occur only along ZnO fibers, which have a higher conductivity compared to NiO. However, the presence of the ZnO/NiO p-n heterojunction leads to the formation of depleted regions in ZnO, as a result, the conductivity of the mixture becomes several orders of magnitude lower than the conductivity of ZnO nanofibers. In the case of a two-layer composite, in which one layer consists of NiO nanofibers and the other layer consists of ZnO nanofibers, charge carriers move through the p-n NiO/ZnO heterojunction, which leads to a rectifying current-voltage characteristic and opens up broad prospects for the use of such systems in electronic devices. Keywords: metal oxides, zinc oxide, nickel oxide, heterostructures, conductivity.
  1. M.R. Hasan, T. Xie, S.C. Barron, G. Liu, N.V. Nguyen, A. Motayed, M.V. Rao, R. Debnath, APL Mater., 3, 106101 (2015). DOI: 10.1063/1.4932194
  2. A.S. Ilin, M.I. Ikim, P.A. Forsh, T.V. Belysheva, M.N. Martyshov, P.K. Kashkarov, L.I. Trakhtenberg, Sci. Rep., 7, 12204 (2017). DOI: 10.1038/s41598-017-12547-5
  3. Y. Zhao, J. Chen, W. Cai, Y. Bu, Q. Huang, T. Tao, J. Lu, Chem. Phys. Lett., 725, 66 (2019). DOI: 10.1016/j.cplett.2019.04.010
  4. S. Jabeen, J. Iqbal, A. Arshad, J. Williams, S. Samarin, M. Rani, J. Alloys Compd., 842, 155840 (2020). DOI: 10.1016/j.jallcom.2020.155840
  5. R.K. Sharma, R. Ghose, J. Alloys Compd., 686, 64 (2016). DOI: 10.1016/j.jallcom.2016.05.298
  6. Y. Chen, B. Liu, J. Chen, L. Tian, L. Huang, M. Tu, S. Tan, Nanoscale Res. Lett., 10, 200 (2015). DOI: 10.1186/s11671-015-0901-8
  7. G.N. Gerasimov, V.F. Gromov, O.J. Ilegbusi, L.I. Trakhtenberg, Sensors Actuators B, 240, 613 (2017). DOI: 10.1016/j.snb.2016.09.007
  8. A. Moumen, G.C.W. Kumarage, E. Comini, Sensors, 22, 1359 (2022). DOI: 10.3390/s22041359
  9. M. Jlassi, I. Sta, M. Hajji, B. Ben Haoua, H. Ezzaouia, Mater. Sci. Semicond. Process, 26, 395 (2014). DOI: 10.1016/j.mssp.2014.05.008
  10. R.K. Gupta, K. Ghosh, P.K. Kahol, Physica E, 41, 617 (2009). DOI: 10.1016/j.physe.2008.10.013
  11. V.B. Platonov, M.N. Rumyantseva, T.B. Shatalova, A.E. Baranchikov, A.M. Gas'kov, Russ. J. Appl. Chem., 91, 447 (2018). DOI: 10.1134/S1070427218030175
  12. T.V. Belysheva, M.I. Ikim, A.S. Il'in, P.K. Kashkarov, M.N. Martyshov, Y. Paltiel, L.I. Trakhtenberg, N.P. Fantina, P.A. Forsh, Russ. J. Phys. Chem. B, 10, 810 (2016). DOI: 10.1134/S1990793116050171
  13. E.A. Forsh, A.V. Marikutsa, M.N. Martyshov, P.A. Forsh, M.N. Rumyantseva, A.M. Gas'kov, P.K. Kashkarov, JETP, 111, 653 (2010). DOI: 10.1134/S106377611010016X

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru