Changing the parameters of vacancy formation and self-diffusion in various polymorphic modifications of iron
Magomedov M. N. 1
1Institute for Geothermal Problems and Renewable Energy – branch of Joint Institute for High Temperatures of Russian Academy Sciences
Email: mahmag4@mail.ru

PDF
The activation parameters for various iron structures were calculated by the analytical method based on the paired four-parameter Mie-Lennard-Jones interatomic interaction potential. Within the framework of a single method, all the activation processes parameters were calculated: Gibbs energy, enthalpy, entropy and volume for both the process of electroneutral vacancy formation and for the process of atom self-diffusion. The isobaric temperature dependences of the indicated activation parameters for BCC and FCC iron structures from T=10 to 1810 K along two isobars: P=0 and 10 GPa were calculated. It is shown that at the α-γ transition temperature (1184 K), the activation parameters decrease during the isobaric transition from the BCC to the FCC structure. At the γ-delta transition temperature (1667 K), the activation parameters increase during the transition from the FCC to the BCC structure. With increasing pressure, the jumps magnitude for the Gibbs energy and the enthalpy of the activation process increases, and for the entropy and volume of the activation process decreases. It is shown that, at low temperatures, due to quantum regularities, activation parameters strongly depend on temperature, and the entropy of activation processes in this region is negative. In the high temperature region, a good agreement has been obtained with the experimental estimates of activation parameters for different iron structures known from the literature. Keywords: vacancy, self-diffusion, interatomic potential, iron, structure, phase transition.
  1. P.I. Dorogokupets, A.M. Dymshits, K.D. Litasov, T.S. Sokolova. Scientific Reports, 7 (1), 1 (2017). DOI: 10.1038/srep41863
  2. S.J. Turneaure, S.M. Sharma, Y.M. Gupta. Phys. Rev. Lett., 125 (21), 215702 (2020). DOI: 10.1103/PhysRevLett.125.215702
  3. P.A. Korzhavyi, I.A. Abrikosov, B. Johansson, A.V. Ruban, H.L. Skriver. Phys. Rev. B, 59 (18), 11693 (1999). DOI: 10.1103/PhysRevB.59.11693
  4. I.V. Valikova, A.V. Nazarov. Phys. Metals Metallography, 109 (3), 220 (2010). DOI: 10.1134/S0031918X10030026
  5. R. Nazarov, T. Hickel, J. Neugebauer. Phys. Rev. B, 85 (14), 144118 (2012). DOI: 10.1103/PhysRevB.85.144118
  6. B.H. Zhang. AIP Advances, 4 (1), 017128 (2014). DOI: 10.1063/1.4863462
  7. B. Medasani, M. Haranczyk, A. Canning, M. Asta. Comp. Mater. Sci., 101, 96 (2015). DOI: 10.1016/j.commatsci.2015.01.018
  8. Y. Gong, B. Grabowski, A. Glensk, F. Kormann, J. Neugebauer, R.C. Reed. Phys. Rev. B, 97 (21), 214106 (2018). DOI: 10.1103/PhysRevB.97.214106
  9. P.-W. Ma, S.L. Dudarev. Phys. Rev. Mater., 3 (6), 063601 (2019). DOI: 10.1103/physrevmaterials.3.063601
  10. A. Schneider, C.C. Fu, F. Soisson, C. Barreteau. Phys. Rev. Lett., 124 (21), 215901 (2020). DOI: 10.1103/PhysRevLett.124.215901
  11. P.A. Varotsos, N.V. Sarlis, E.S. Skordas. Crystals, 12 (5), 686 (2022). DOI: 10.3390/cryst12050686
  12. M.N. Magomedov. Physica Solid State, 64 (4), 469 (2022). DOI: 10.21883/PSS.2022.04.53504.240
  13. M.N. Magomedov. Tech. Phys., 58 (9), 1297 (2013). DOI: 10.1134/S106378421309020X
  14. M.N. Magomedov. Physics Solid State, 64 (7), 765 (2022). DOI: 10.21883/PSS.2022.07.54579.319
  15. L.A. Girifalco. Statistical Physics of Materials (J. Wiley and Sons Ltd., NY., 1973)
  16. M.N. Magomedov. Physics Solid State, 63 (2), 215 (2021). DOI: 10.1134/S1063783421020165
  17. S.I. Novikova. Teplovoe rasshirenie tverdykh tel (Nauka, M., 1974) (in Russian)
  18. D.R. Wilburn, W.A. Bassett. American Mineralogist, 63 (5--6), 591 (1978). https://pubs.geoscienceworld.org/msa/ ammin/article-abstract/63/5-6/591/40926
  19. Y. Shibazaki, K. Nishida, Y. Higo, M. Igarashi, M. Tahara, T. Sakamaki, H. Terasaki, Y. Shimoyama, S. Kuwabara, Y. Takubo, E. Ohtani. American Mineralogist, 101 (5), 1150 (2016). DOI: 10.2138/am-2016-5545
  20. Z. Dong, W. Li, D. Chen, S. Schonecker, M. Long, L. Vitos. Phys. Rev. B, 95 (5), 054426 (2017). DOI: 10.1103/PhysRevB.95.054426
  21. A.M. Balagurov, I.A. Bobrikov, I.S. Golovin. JETP Lett., 107 (9), 558 (2018). DOI: 10.7868/S0370274X18090084
  22. L.J. Swartzendruber. Bulletin of Alloy Phase Diagrams, 3 (2), 161 (1982). DOI: 10.1007/BF02892374
  23. U. Krause, J.P. Kuska, R. Wedell. Phys. Stat. Sol. (b), 151 (2), 479 (1989). DOI: 10.1002/pssb.2221510208
  24. Metals Reference Book, C.I. Smithells (Butterworth and Co. (Publishers) Ltd., London, 1976)
  25. H.E. Schaefer. Phys. Stat. Sol. (a), 102 (1), 47 (1987). DOI: 10.1002/pssa.2211020104
  26. T. Heumann, R. Imm. J. Phys. Chem. Sol., 29 (9), 1613 (1968). DOI: 10.1016/0022-3697(68)90103-0
  27. P.R. Granfors, B.A. Fraass, R.O. Simmons. J. Low Temperature Phys., 67 (5/6), 353 (1987). DOI: 10.1007/BF00710349
  28. I. Iwasa. J. Phys. Society Jpn., 56 (5), 1635 (1987). DOI: 10.1143/JPSJ.56.1635
  29. M.I. Mendelev, B.S. Bokstein. Philosophical Magazine, 90 (5), 637 (2010). DOI: 10.1080/14786430903219020
  30. C.Z. Hargather, S.-L. Shang, Z.-K. Liu, Y. Du. Computational Mater. Sci., 86, 17 (2014). DOI: 10.1016/j.commatsci.2014.01.003
  31. N.P. Kobelev, V.A. Khonik. JETP, 126 (3), 340 (2018). DOI: 10.1134/S1063776118030032
  32. M. Senoo, H. Mii, I. Fujishiro, T. Takeuchi. Jpn. J. Appl. Phys., 12 (10), 1621 (1973). DOI: 10.1143/JJAP.12.1621
  33. S. Mukherjee, R.E. Cohen, O. Gulseren. J. Phys.: Condens. Matter., 15 (6), 855 (2003). DOI: 10.1088/0953-8984/15/6/312
  34. R.J. Borg, D.Y.F. Lai, O.H. Krikorian. Acta Metallurgica, 11 (8), 867 (1963). DOI: 10.1016/0001-6160(63)90056-7
  35. D.W. James, G.M. Leak. A J. Theor. Experiment. Appl. Phys., 14 (130), 701 (1966). DOI: 10.1080/14786436608211966
  36. M.N. Magomedov. Tech. Phys. Lett., 28 (5), 430 (2002). DOI: 10.1134/1.1482758
  37. M.N. Magomedov. Tech. Phys. Lett., 48 (6), 59 (2022). DOI: 10.21883/TPL.2022.06.53793.19234

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru