On the Formation of the Trajectory of Propagation of Laser Radiation in the Anderson Differential Cell
Goldberg A. A.1, Davydov R. V. 1, Kochetkov I. D.1, Davydov V. V. 1, D.S. Provodin1
1Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: artemiy.goldberg@mail.ru, davydovroman@outlook.com, K.Igor.D@yandex.ru, davydov_vadim66@mail.ru

PDF
The necessity of studying the nature of the propagation of the maximum of the laser radiation pattern in the Anderson differential cell is substantiated. A new technique has been developed for conducting these studies, which takes into account all factors when constructing the trajectory of the maximum laser radiation in the cuvette, as well as outside it (up to the sensor of the photodiode line, on which the radiation is recorded). For the first time, an equation was derived to study the change in the nature of the propagation trajectory of the maximum of laser radiation in the Anderson cell, and beyond it, depending on its various parameters, the values of the refractive indices of the reference ns and the liquid medium under study, nm. The results of checking the reliability of the developed equation are presented. For the first time, a 12th degree polynomial was obtained for Anderson's differential cell with respect to the refractive index of the medium under study to obtain an analytical solution of the developed equation. This solution will provide additional information about the physics of the processes under consideration and the relationships between different quantities. Keywords: laser radiation, refraction, liquid, refractive index, Anderson cell, spread trajectory, equation, polynomial.
  1. A.F. Guedes, F.A. Carvalho, C. Moreira, J.B. Nogueira, N.C. Santos. Nanoscale, 9 (39), 14897(2017). DOI: 10.1039/c7nr03891g
  2. V. Antonov, P. Efremov. Tech. Phys.,65 (9), 1446 (2020). DOI: 10.1134/S1063784220090042
  3. M.S. Mazing, A.Y.Zaitceva, Y.Y. Kislyakov, S.A. Avdyushenko. Intern. J. Pharmaceutical Research,12, 1974 (2020). DOI: 10.31838/iipr/2020.SP2.355
  4. V.V. Davydov, N.S. Myazin, S.S. Makeev, V.I. Dudkin. Tech. Phys., 65 (8), 1327 (2020). DOI: 10.1134/S1063784220080058
  5. A. Bobyl, V. Malyshkin, V. Dolzhenko, A. Grabovets, V. Chernoivanov. IOP Confe. Series: Earth and Environmental Science, 390 (1), 012047 (2019). DOI: 10.1088/1755-1315/390/1/012047
  6. F. Murzakhanov, G. Mamin, S. Orlinskii, M. Gafurov, V. Komlev. ACS Omega, 6 (39), 25338 (2021). DOI: 10.1021/acsomega.1c03238
  7. E. Verbitskaya, V. Eremin, A. Zabrodskii, N. Egorov, A. Galkin. J. Instrumentation, 12 (3), C03036 (2017). DOI: 10.1088/1748-0221/12/03/C03036
  8. J. Burlakovs, Z. Vincevica-Gaile, M. Krievans, T. Tamm, M. Klavins. Minerals, 10 (6), 1 (2020)
  9. A. Bobyl, I. Kasatkin. RSC Advances, 11 (23), 13799 (2021). DOI: 10.1039/d1ra02102h
  10. V.V. Davydov, N.S. Myazin, V.I. Dudkin. Tech. Phys., 63 (12), 1845 (2018). DOI: 10.1134/S1063784218120046
  11. A.I. Zhernovoi, A.A. Komlev, S.V. D'yachenko. Tech. Phys., 61 (2), 302 (2016). DOI: 10.1134/S1063784216020274
  12. M.A. Karabegov, Measurement Techniques, 47 (11), 1106 (2004). DOI: 10.1007/s11018-005-0069-1
  13. N.M. Grebenikova, V.Y. Rud. J. Physics: Conference Series, 1410 (1), 012186 (2019). DOI: 10.1088/1742-6596/1410/1/012186
  14. V.V. Davydov, A.V. Moroz, Optics and Spectroscopy, 128 (9), 1415 (2020). DOI: 10.1134/S0030400X20090076
  15. M.A. Karabegov, Measurement Techniques, 50 (6), 619 (2007). DOI: 10.1007/s11018-007-0120-5
  16. E.V. Rodriguez, A.D. Guzman Chavez. Opt. Commun., 524, 128765 (2022). DOI: 10.1016/j.optcom.2022.128765
  17. S.A. Jaywant, H. Singh, K.M. Arif. Sensors, 22 (6), 2290 (2022). DOI: 10.3390/s22062290
  18. M. Condorelli, L. Litti, M. Pulvirenti, M. Meneghetti, G. Compagnini. Appl. Surfa. Sci., 566, 150701 (2021). DOI: 10.1016/j.apsusc.2021.150701
  19. M.A. Karabegov, Measurement Techniques, 54 (10), 1203 (2012). DOI: 10.1007/s11018-012-9872-7
  20. K.S. Rashid, L. Tathfif, A.A. Yaseer, M.F. Hassan, R.H. Sagor, Opt. Express, 29 (23), 37541 (2021). DOI: 10.1364/OE.442954
  21. M.A. Karabegov. Measurement Techniques, 52 (4), 416 (2009). DOI: 10.1007/s11018-009-9279-2
  22. P. Gao, X. Zheng, Y. Liu, Z. Wang. Optik, 267, 169682 (2022). DOI: 10.1016/j.ijleo.2022.169682
  23. A. Kumar, P. Verma, P. Jindal. J. Opt. Society America B: Opt. Phys., 38 (12), F81 (2021). DOI: 10.1364/JOSAB.438367
  24. V.S. Terent'ev, V.A. Simonov. Opt. Spectr., 129 (11), 1179 (2021). DOI: 10.1134/S0030400X21080191

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru