Characterization of boron-doped single-crystal diamond by electrophysical methods (review)
Zubkov V.I. 1, Solomnikova A.V. 1, Solomonov A.V. 1, Koliadin A.V.2, Butler J.E.1,3
1St. Petersburg State Electrotechnical University "LETI", St. Petersburg, Russia
2OOO NPK Almaz, Sestroretsk, Russia
3Cubic Carbon Ceramics, MD Huntingtown, USA
Email: vzubkovspb@mail.ru, solomnikova-anna@yandex.ru, avsolomonov@etu.ru, koliaidin56@mail.ru

PDF
A critical analysis of the existing methods of controlling the concentration of impurity and majority charge carriers in wide bandgap semiconductors and the issues of improvement of modern diagnostics of the main electrophysical properties of single-crystal diamond are considered based on the results of our studies and the works of other authors. It was found that independent assessment of impurity concentration and concentration of free charge carriers is of fundamental importance for semiconductor diamond due to very low (less than 1%) degree of ionization of the introduced impurity. The advantages and prospects of admittance spectroscopy as a diagnostic method for ultrawide bandgap semiconductors are shown and solutions aimed at the correct interpretation of the experimental data are proposed. The high ionization energy of boron impurity in diamond (370 meV) results in a strong frequency dispersion of the measured barrier capacitance. It is shown that under disturbance of quasi-static conditions in capacitance-voltage measurements, low frequencies and high temperatures should be used for correct assessment of the charge carrier concentration. The results of electrophysical studies are compared with traditional measurements of impurity concentration in diamond by optical methods. A decrease of hole activation energy from the boron impurity level from 325 to 100 meV was found upon increasing the boron concentration NA from 2·1016 to 4·1019 cm-3. The transition to the hopping mechanism of conductivity within the impurity (acceptor) band with thermal activation energy of 10-20 meV was registered for NA≥5·1018 cm-3 at temperatures of 120-150 K. Keywords: single-crystal diamond, boron impurity, charge carrier concentration, activation energy, admittance spectroscopy, capacitance-voltage measurements.
  1. A. Traore, P. Muret, A. Fiori, D. Eon, E. Gheeraert, J. Pernot. Appl. Phys. Lett., 104, 052105 (2014). DOI: 10.1063/1.4864060
  2. P.N. Volpe, P. Muret, J. Pernot, F. Omnes, T. Teraji, Y. Koide, F. Jomard, D. Planson, P. Brosselard, N. Dheilly, B. Vergne, S. Scharnholz. Appl. Phys. Lett., 97, 223501 (2010). DOI: 10.1063/1.3520140
  3. R. Pilotti, M. Angelone, S. Loreti, G. Pagano, M. Pillon, F. Sarto, M. Marinelli, E. Milani, G. Prestopino, C. Verona, G. Verona-Rinati. Proc. Sci., 240, 1 (2016). DOI: 10.22323/1.240.0180
  4. A. Metcalfe, G.R. Fern, P.R. Hobson, D.R. Smith, G. Lefeuvre, R. Saenger. J. Instrum., 12, C01066 (2017). DOI: 10.1088/1748-0221/12/01/C01066
  5. E. Kohn, A. Denisenko. Thin Solid Films, 515, 4333 (2007). DOI: 10.1016/j.tsf.2006.07.179
  6. M.W. Geis, T.C. Wade, C.H. Wuorio, T.H. Fedynyshyn, B. Duncan, M.E. Plaut, J.O. Varghese, S.M. Warnock, S.A. Vitale, M.A. Hollis. Phys. Status Solidi Appl. Mater. Sci., 215, 1800681 (2018). DOI: 10.1002/pssa.201800681
  7. S. Koizumi, H. Umezawa, J. Pernot, M. Suzuki (Eds.). Power Electronics Device Applications of Diamond Semiconductors (Woodhead Publishing Series in Electronic and Optical Materials, Cambridge, 2018), DOI: 10.1016/C2016-0-03999-2
  8. S.J. Rashid, A. Tajani, L. Coulbeck, M. Brezeanu, A. Garraway, T. Butler, N.L. Rupesinghe, D.J. Twitchen, G.A.J. Amaratunga, F. Udrea, P. Taylor, M. Dixon, J. Isberg. Diam. Relat. Mater., 15, 317 (2006). DOI: 10.1016/j.diamond.2005.06.019
  9. D.J. Twitchen, A.J. Whitehead, S.E. Coe, J. Isberg, J. Hammersberg, T. Wikstrom, E. Johansson. IEEE Trans. Electron Devices, 51, 826 (2004). DOI: 10.1109/TED.2004.826867
  10. J. Achard, F. Silva, R. Issaoui, O. Brinza, A. Tallaire, H. Schneider, K. Isoird, H. Ding, S. Kone, M.A. Pinault, F. Jomard, A. Gicquel. Diam. Relat. Mater., 20 (2), 145 (2011). DOI: 10.1016/j.diamond.2010.11.014
  11. P. Sittimart, S. Ohmagari, T. Yoshitake. Jpn. J. Appl. Phys., 60, SBBD05 (2021). DOI: 10.35848/1347-4065/abd537
  12. M.P. Dukhnovsky, E.N. Kulikov, A.K. Ratnikova, Yu.Yu. Fedorov, S.A. Bogdanov, A.L. Vikharev, A.M. Gorbachev, A.B. Muchnikov, O.Yu. Kudryashov, K.A. Leont'ev. Elektronnaya tekhnika. Seriya 1 SVCh-tekhnika, 3 (518), 40 (2013) (in Russian)
  13. O. Auciello, S. Pacheco, A.V. Sumant, C. Gudeman, S. Sampath, A. Datta, R.W. Carpick, V.P. Adiga, P. Zurcher, Z. Ma, H.C. Yuan, J.A. Carlisle, B. Kabius, J. Hiller, S. Srinivasan. IEEE Microw. Mag., 8 (6), 61 (2007). DOI: 10.1109/MMM.2007.907816
  14. M. Liao. Funct. Diam., 1, 29 (2021). DOI: 10.1080/26941112.2021.1877019
  15. N.I. Alekseev, V.V. Luchinin. Elektronika almaza (Izd-vo SPbGETU "LETI", SPb., 2019) (in Russian)
  16. E. Berdermann, M. Pomorski, W. de Boer, M. Ciobanu, S. Dunst, C. Grah, M. Kiv s, W. Koenig, W. Lange, W. Lohmann, R. Lovrinv cic, P. Moritz, J. Morse, S. Mueller, A. Pucci, M. Schreck, S. Rahman, M. Trager. Diam. Relat. Mater., 19, 358 (2010). DOI: 10.1016/j.diamond.2009.11.019
  17. S.P. Lansley, H.J. Looi, M.D. Whitfield, R.B. Jackman. Diam. Relat. Mater., 8 (2--5), 946 (1999). DOI: 10.1016/s0925-9635(98)00423-3
  18. P.J. Sellin, A. Galbiati. Appl. Phys. Lett., 87, 093502 (2005). DOI: 10.1063/1.2035885
  19. R.A. Khmel'nitsky, G.V. Chuchueva, N.Kh. Talipov. Sintetichesky almaz dlya elektroniki i optiki (IKAR, M., 2017) (in Russian)
  20. V.A. Bespalov, V.M. Glazov, E.A. Il'ichev, Y.A. Klimov, S.V. Kuklev, A.E. Kuleshov, R.M. Nabiev, G.N. Petrukhin, B.G. Potapov, G.S. Rychkov, D.S. Sokolov, V.V. Fandeev, E.A. Fetisov, S.S. Yakushov. Tech. Phys., 60, 553 (2015). DOI: 10.1134/S1063784215040076
  21. G. Chicot, T.N. Tran Thi, A. Fiori, F. Jomard, E. Gheeraert, E. Bustarret, J. Pernot. Appl. Phys. Lett., 101, 3 (2012). DOI: 10.1063/1.4758994
  22. H. El-Hajj, A. Denisenko, A. Kaiser, R.S. Balmer, E. Kohn. Diam. Relat. Mater., 17, 1259 (2008). DOI: 10.1016/j.diamond.2008.02.015
  23. P.N. Volpe, N. Tranchant, J.C. Arnault, S. Saada, F. Jomard, P. Bergonzo. Phys. Status Solidi --- Rapid Res. Lett., 6, 59 (2012). DOI: 10.1002/pssr.201105480
  24. M. Kunze, A. Vescan, G. Dollinger, A. Bergmaier, E. Kohn. Carbon NY., 37, 787 (1999). DOI: 10.1016/S0008-6223(98)00272-3
  25. V.I. Zubkov, M.F. Panov, A.V. Afanas'ev, V.A. Il'in, A.V. Zubkova, I.A. Lamkin, J.E. Butler, A.L. Vikharev, S.A. Bogdanov. Nano- i mikrosistemnaya tekhnika, 12, 22 (2015) (in Russian)
  26. S. Eaton-Magana, A. Troy, C.M. Breeding. J. Gems \& Gemmol., 26, 25 (2021). DOI: 10.15964/j.cnki.027jgg.2021.06.003
  27. V.C. Bormashov, S.A. Tarelkin, S.G. Buga, A.P. Volkov, A.V. Golovanov, M.S. Kuznetsov, N.V. Kornilov, D.V. Teteruk, S.A. Terent'ev, V.D. Blank. Zavodskaya laboratoriya. Diagnostika materialov, 83, 36 (2017) (in Russian)
  28. V.V. Strelchuk, A.S. Nikolenko, P.M. Lytvyn, S.O. Ivakhnenko, T.V. Kovalenko, I.M. Danylenko, S.V. Malyuta. Semicond. Physics, Quantum Electron. Optoelectron., 24, 261 (2021)
  29. Y.D. Li, Y.S. Chen, M.J. Su, Q.F. Ran, C.X. Wang, H.A. Ma, C. Fang, L.C. Chen. Chin. Phys. B, 29, 078101 (2020). DOI: 10.1088/1674-1056/ab90e8
  30. U.F.S. D'Haenens-Johansson, A. Katrusha, K.S. Moe, P. Johnson, W. Wang, Gems \& Gemol., 51, 260 (2015). DOI: 10.5741/GEMS.51.3.260
  31. P.L. Diggle, U.F.S. D'Haenens-Johansson, B.L. Green, C.M. Welbourn, T.N. Tran Thi, A. Katrusha, W. Wang, M.E. Newton. Phys. Rev. Mater., 4, 093402 (2020). DOI: 10.1103/PhysRevMaterials.4.093402
  32. A. Bogatskiy, J.E. Butler. Diam. Relat. Mater., 53, 58 (2015). DOI: 10.1016/j.diamond.2014.12.010
  33. A.A. Mayer. Protsessy rosta kristallov: uch. posobie (RKhTU im. D.I. Mendeleeva, M., 1999) (in Russian)
  34. A. Paoletti, A. Tucciarone (eds.). The Physics of Diamond, in: Proc. Int. Sch. Phys. "Enrico Fermi" (1997), p. 607
  35. J.C. Angus. Diam. Relat. Mater. 49, 77 (2014). DOI: 10.1016/j.diamond.2014.08.004
  36. P.M. Martineau, M.P. Gaukroger, K.B. Guy, S.C. Lawson, D.J. Twitchen, I. Friel, J.O. Hansen, G.C. Summerton, T.P.G. Addison, R. Burns. J. Phys.: Condens. Matter, 21, 364205 (2009). DOI: 10.1088/0953-8984/21/36/364205V
  37. V. Mortet, A. Soltani. Appl. Phys. Lett., 99 (20), 202105 (2011). DOI: 10.1063/1.3662403
  38. A. Tallaire, J. Achard, F. Silva, O. Brinza, A. Gicquel. Comptes Rendus Phys., 14, 169 (2013). DOI: 10.1016/j.crhy.2012.10.008`
  39. A.L. Vikharev, M.A. Lobaev, A.M. Gorbachev, D.B. Radishev, V.A. Isaev, S.A. Bogdanov. Mater. Today Commun., 22, 100816 (2020). DOI: 10.1016/j.mtcomm.2019.100816
  40. M. Schwander, K. Partes. Diam. Relat. Mater., 20, 1287 (2011). DOI: 10.1016/j.diamond.2011.08.005
  41. J.J. Gracio, Q.H. Fan, J.C. Madaleno. J. Phys. D: Appl. Phys., 43 (37), 374017 (2010). DOI: 10.1088/0022-3727/43/37/374017
  42. B.V. Spitsyn, L.L. Bouilov, B.V. Derjaguin. J. Cryst. Growth., 52 (1), 219 (1981). DOI: 10.1016/0022-0248(81)90197-4
  43. D.I. Sobolev, A.M. Gorbachev, A.L. Vikharev, G.G. Denisov. Plazmenny reaktor dlya vysokoskorostnogo osazhdeniya almaznykh plenok iz gazovoy phazy (Patent RF RU 2416677, 2002) (in Russian)
  44. J.E. Butler, Y.A. Mankelevich, A. Cheesman, J. Ma, M.N.R. Ashfold. J. Phys.: Condens. Matter., 21 (36), 364201 (2009). DOI: 10.1088/0953-8984/21/36/364201
  45. A.B. Muchnikov, A.L. Vikharev, A.M. Gorbachev, D.B. Radishev. Diam. Relat. Mater., 20, 1225 (2011). DOI: 10.1016/j.diamond.2011.06.030
  46. E.A. Surovegina, E.V. Demidov, M.N. Drozdov, A.V. Murel, O.I. Khrykin, V.I. Shashkin, M.A. Lobaev, A.M. Gorbachev, A.L. Viharev, S.A. Bogdanov, V.A. Isaev, A.B. Muchnikov, V.V. Chernov, D.B. Radishchev, D.E. Batler. Semiconductors, 50, 1569 (2016). DOI: 10.1134/S1063782616120204
  47. A.Ya. Vul', O.A. Shenderova (red.). Detonatsyonnye nanoalmazy. Tekhnologiya, struktura, svoistva i primeneniya (Izd-vo FTI im. A.F. Ioffe, SPb, 2016) (in Russian)
  48. P.P. Sharin, A.V. Sivtseva, V.I. Popov. Tech. Phys., 66, 275 (2021). DOI: 10.1134/S1063784221020183
  49. A.M. Panich, M. Salti, O. Prager, E. Swissa, Y.V. Kulvelis, E.B. Yudina, A.E. Aleksenskii, S.D. Goren, A.Y. Vul', A.I. Shames. Magn. Reson. Med., 86 (2), 935 (2021). DOI: 10.1002/mrm.28762
  50. V.A. Plotnikov, S.V. Makarov, D.G. Bogdanov, A.S. Bogdanov. AIP Conf. Proc., 1785, 040045 (2016). DOI: 10.1063/1.4967102
  51. K. Hanada. Surf. Eng., 25, 487 (2009). DOI: 10.1179/174329409X433939
  52. E. Osawa, D. Ho. J. Med. Allied Sci., 2, 31 (2012)
  53. J. Barzola-Quiquia, E. Osmic, T. Luhmann, W. Bohlmann, J. Meijer, W. Knolle, B. Abel. Diam. Relat. Mater., 123, 108891 (2022)
  54. Y. Mindarava, R. Blinder, C. Laube, W. Knolle, B. Abel, C. Jentgens, J. Isoya, J. Scheuer, J. Lang, I. Schwartz, B. Naydenov, F. Jelezko. Carbon, 170, 182 (2020). DOI: 10.1016/j.carbon.2020.07.077
  55. Y. Mita. Phys. Rev. B --- Condens. Matter Mater. Phys., 53, 11360 (1996). DOI: 10.1103/PhysRevB.53.11360
  56. O.N. Lopatin, A.G. Nikolaev, V.F. Valeev, V.I. Nuzhdin, R.I. Khaibullin. Crystallogr. reports, 63 (3), 327 (2018). DOI: 10.1134/S1063774518030161
  57. V.G. Vins, A.P. Yelisseyev, D.V. Smovzh, S.A. Novopashin, Diam. Relat. Mater., 86, 79 (2018). DOI: 10.1016/j.diamond.2018.04.022
  58. A.T. Collins, Diam. Relat. Mater., 8, 1455 (1999). DOI: 10.1016/s0925-9635(99)00013-8
  59. B. Dischler. Handbook of Spectral Lines in Diamond. Vol. 1: Tables and Interpretations (Springer-Verlag, Berlin, Heidelberg, 2012), DOI: 10.1007/978-3-642-22215-3
  60. M. Ruf, N.H. Wan, H. Choi, D. Englund, R. Hanson. J. Appl. Phys., 130, 070901 (2021). DOI: 10.1063/5.0056534
  61. E. Abe, K. Sasaki. J. Appl. Phys., 123, 161101 (2018). DOI: 10.1063/1.5011231
  62. A.K. Vershovskii, A.K. Dmitriev. Tech. Phys., 65, 1301 (2020). DOI: 10.1134/S1063784220080216
  63. A.J. Healey, A. Stacey, B.C. Johnson, D.A. Broadway, T. Teraji, D.A. Simpson, J.P. Tetienne, L.C.L. Hollenberg. Phys. Rev. Mater., 4, 104605 (2020). DOI: 10.1103/PhysRevMaterials.4.104605
  64. D.B. Radishev, M.A. Lobaev, S.A. Bogdanov, A.M. Gorbachev, A.L. Vikharev, M.N. Drozdov. J. Lumin., 239, 118404 (2021). DOI: 10.1016/j.jlumin.2021.118404
  65. S. Pezzagna, J. Meijer. Appl. Phys. Rev., 8 (2021). DOI: 10.1063/5.0007444
  66. A.I. Zeleneev, S.V. Bolshedvorskii, L.A. Zhulikov, V.V. Sochenko, O.R. Rubinas, V.N. Sorokin, A.N. Smolyaninov, A.V. Akimov. AIP Conf. Proc., 2241, 020039 (2020). DOI: 10.1063/5.0012326
  67. C. Wang, C. Kurtsiefer, H. Weinfurter, B. Burchard. J. Phys. B At. Mol. Opt. Phys., 39, 37 (2006). DOI: 10.1088/0953-4075/39/1/005
  68. T. Luhmann, R. John, R. Wunderlich, J. Meijer, S. Pezzagna. Nat. Commun., 10, 4956 (2019). DOI: 10.1038/s41467-019-12556-0
  69. A. Pershin, G. Barcza, O. Legeza, A. Gali. Npj Quantum Inf., 7, 99 (2021). DOI: 10.1038/s41534-021-00439-6
  70. R. Fukuta, Y. Murakami, H. Ohfuji, T. Shinmei, T. Irifune, F. Ishikawa. Jpn. J. Appl. Phys., 60 (3), 035501 (2021). DOI: 10.35848/1347-4065/abdc31
  71. A.A. Razgulov, S.G. Lyapin, A.P. Novikov, E.A. Ekimov. Diam. Relat. Mater., 116, 108379 (2021). DOI: 10.1016/j.diamond.2021.108379
  72. V.A. Kukushkin. Tech. Phys., 64 (2), 226 (2019). DOI: 10.1134/S1063784219020105
  73. S.J. Charles, J.W. Steeds, D.J.F. Evans, J.E. Butler. Mater. Lett., 57, 3690 (2003). DOI: 10.1016/S0167-577X(03)00152-6
  74. J. Barjon, E. Chikoidze, F. Jomard, Y. Dumont, M.A. Pinault-Thaury, R. Issaoui, O. Brinza, J. Achard, F. Silva. Phys. Status Solidi a --- Appl. Mater. Sci., 209, 1750 (2012). DOI: 10.1002/pssa.201200136
  75. S.A. Manifold, G. Klemencic, E.L.H. Thomas, S. Mandal, H. Bland, S.R. Giblin, O.A. Williams. Carbon, 179, 13 (2021). DOI: 10.1016/j.carbon.2021.02.079
  76. N. Lambert, A. Taylor, P. Hubi k, J. Bul r, J. More-Chevalier, H. Karaca, C. Fleury, J. Voves, Z. v Soban, D. Pogany, V. Mortet. Diam. Relat. Mater., 109, 108003 (2020). DOI: 10.1016/j.diamond.2020.108003
  77. A.V. Krasil'nikov, N.B. Rodionov, A.P. Bol'shakov, V.G. Ral'chenko, S.K. Vartapetov, Yu.E. Sizov, S.A. Meschaninov, A.G. Trapeznikov, V.P. Rodionova, V.N. Amosov, A.N. Khmel'nitsky, R.A. Kirichenko. ZhTF, 92, 596 (2022) (in Russian). DOI: 10.21883/JTF.2022.04.52247.226-21
  78. Yu.V. Gulyaev, A.Yu. Mityagin, V.S. Feschenko, G.V. Chucheva. DAN, 450 (4), 401 (2013) (in Russian)
  79. H. Kawarada, Y. Araki, T. Sakai, T. Ogawa, H. Umezawa. Phys. Status Solidi (A), 185, 79 (2001). DOI: 10.1002/1521-396X(200105)185:1<79::AID-PSSA79>3.0.CO;2-8
  80. C.E. Nebel, D. Shin, B. Rezek, N. Tokuda, H. Uetsuka, H. Watanabe, J.R. Soc. Interface, 4, 439 (2007). DOI: 10.1098/rsif.2006.0196
  81. Y.V. Pleskov. Russ. J. Electrochem., 38, 1275 (2002). DOI: 10.1023/A:1021651920042
  82. F. Gao, C.E. Nebel. ACS Appl. Mater. Interfaces., 8 (28), 18640 (2016). DOI: 10.1021/acsami.6b07024
  83. V. Mortet, A. Taylor, M. Davydova, J. Jiranek, L. Fekete, L. Klimv sa, D. v Simek, N. Lambert, S. Sedlakova, J. Kopev cek, P. Hazdra. Diam. Relat. Mater., 122, 108887 (2022). DOI: 10.1016/j.diamond.2022.108887
  84. V. Zubkov, A. Solomnikova, A. Koliadin, J.E. Butler. Mater. Today Commun., 24, 100995 (2020). DOI: 10.1016/j.mtcomm.2020.100995
  85. V.I. Zubkov, D.E. Batler. Elektronika i mikroelektronika SVCh, 1, 68 (2015) (in Russian)
  86. M.A. Lobaev, A.M. Gorbachev, A.L. Vikharev, D.B. Radishev, V.A. Isaev, S.A. Bogdanov, M.N. Drozdov, P.A. Yunin, J.E. Butler. Phys. Status Solidi B, 256 (3), 1800606 (2019). DOI: 10.1002/pssb.201800606
  87. N. Mirsaleh-Kohan, W.D. Robertson, R.N. Compton. Mass Spectrom. Rev., 27, 237 (2008). DOI: 10.1002/mas.20162
  88. P. Blood, J.W. Orton. The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic Press, London, 1992)
  89. D.K. Schroder. Semiconductor Material and Device Characterization: Third Edition (John Wiley \& Sons, Inc., 2005), DOI: 10.1002/0471749095
  90. V.S. Bormashov, S.A. Tarelkin, S.G. Buga, M.S. Kuznetsov, S.A. Terentiev, A.N. Semenov, V.D. Blank. Diam. Relat. Mater., 35, 19 (2013). DOI: 10.1016/j.diamond.2013.02.011
  91. E.P. Visser, G.J. Bauhuis, G. Janssen, W. Vollenberg, J.P. van Enckevort, L.J. Giling. J. Phys.: Condens. Matter, 4, 7365 (1992). DOI: 10.1088/0953-8984/4/36/011
  92. T.H. Borst, O. Weis. Phys. Status Solidi (A), 154, 423 (1996). DOI: 10.1002/pssa.2211540130
  93. G.E. Yakovlev, D.S. Frolov, V.I. Zubkov. Zavodskaya laboratoriya. Diagnostika materialov, 87, 35 (2021) (in Russian). DOI: 10.26896/1028-6861-2021-87-1-35-44
  94. P.N. Brunkov, A.A. Gutkin, M.E. Rudinsky, O.I. Ronghin, A.A. Sitnikova, A.A. Shakhmin, B.Y. Ber, D.Y. Kazantsev, A.Y. Egorov, V.E. Zemlyakov, S.G. Konnikov. Semiconductors, 45, 811 (2011). DOI: 10.1134/S1063782611060078
  95. B. Sermage, Z. Essa, N. Taleb, M. Quillec, J. Aubin, J.M. Hartmann, M. Veillerot. J. Appl. Phys., 119, 155703 (2016). DOI: 10.1063/1.4946890
  96. D.S. Frolov, G.E. Yakovlev, V.I. Zubkov. FTP, 53 (2), 281 (2019) (in Russian). DOI: 10.21883/FTP.2019.02.47114.8966
  97. V.F. Lebedev, D.V. Bulyga, A.V. Kolyadin. Pis'ma v ZhTF, 46, 7 (2020) (in Russian)
  98. P.R. Griffiths, J.A. De Haseth. Fourier Transform Infrared Spectrometry: 2nd Edition (Wiley-Blackwell, 2007), DOI: 10.1002/047010631X
  99. D. Howell, A.T. Collins, L.C. Loudin, P.L. Diggle, U.F.S. D'Haenens-Johansson, K.V. Smit, A.N. Katrusha, J.E. Butler, F. Nestola. Diam. Relat. Mater., 96, 207 (2019). DOI: 10.1016/j.diamond.2019.02.029
  100. J. Walker. Reports Prog. Phys., 42, 1605 (1979). DOI: 10.1088/0034-4885/42/10/001
  101. V.I. Polyakov, A.I. Rukovishnikov, N.M. Rossukanyi, V.G. Ralchenko. Diam. Relat. Mater., 10, 593 (2001). DOI: 10.1016/S0925-9635(00)00492-1
  102. L.S. Berman. Emkostnye metody issledovaniya poluprovodnikov (Nauka, L., 1972) (in Russian)
  103. V.I. Zubkov. Diagnostika poluprovodnikovykh nanogeterostruktur metodami spektroskopii admittansa (Elmor, SPb, 2007) (in Russian)
  104. L.S. Berman, A.A. Lebedev. Emkostnaya spektroskopiya glubokikh tsentrov v poluprovodnikakh (Nauka, L., 1981) (in Russian)
  105. A.R. Peaker, V.P. Markevich, J. Coutinho. J. Appl. Phys., 123, 161559 (2018). DOI: 10.1063/1.5011327
  106. G.H. Glover. Solid State Electron., 16, 973 (1973). DOI: 10.1016/0038-1101(73)90196-2
  107. D.S. Frolov, V.I. Zubkov. Semicond. Sci. Technol., 31, 125013 (2016). DOI: 10.1088/0268-1242/31/12/125013
  108. O.V. Konstantinov, O.A. Mezrin. FTP, 17, 305 (1983) (in Russian)
  109. Yu.A. Gol'dberg, O.V. Ivanova, T.V. L'vova, B.V. Tsarenkov. FTP, 17, 1068 (1983) (in Russian)
  110. T. Humer-Hager. Semicond. Sci. Technol., 3, 553 (1988). DOI: 10.1088/0268-1242/3/6/007
  111. V.I. Zubkov. FTP, 40, 1236 (2006) (in Russian). DOI: 10.1134/S1063782606100149
  112. A.T. Collins, E.C. Lightowlers, In: The Properties of Diamond, ed. by J.E. Field (Academic, London, 1979), p. 3
  113. G.Sh. Gildenblat, P.E. Shmidt. In: Handbook Series on Semiconductor Parameters: vol. 1. Ed. by M. Levinshtein, S. Rumyantsev, M. Shur (World Scientific, London, 1996)
  114. V.N. Ovsyuk. Elektronnye protsessy v poluprovodnkakh s oblastyami prostranstvennogo zaryada (Nauka, M., 1984) (in Russian)
  115. N.A. Poklonski, S.A. Vyrko, O.N. Poklonskaya, A.I. Kovalev, A.G. Zabrodskii. J. Appl. Phys., 119 (24), 245701 (2016)
  116. V.I. Zubkov, M.A. Melnik, A.V. Solomonov, E.O. Tsvelev, E.O. Bugge, M. Weyers, G. Trankle, Phys. Rev. B, 70, 075312 (2004). DOI: 10.1103/PhysRevB.70.075312
  117. C.S. Hung, J.R. Gliessman. Phys. Rev., 96 (1954) 1226. DOI: 10.1103/PhysRev.96.1226
  118. H. Fritzsche. Phys. Rev., 99, 406 (1955). DOI: 10.1103/PhysRev.99.406
  119. T.H. Borst, O. Weis. Diam. Relat. Mater., 4, 948 (1995). DOI: 10.1016/0925-9635(94)00263-0
  120. J.-P. Lagrange, A. Deneuville, E. Gheeraert. Diam. Relat. Mater., 7, 1390 (1998)
  121. D. Blackmore. Solid body physics (Mir, M., 1988)
  122. A.V. Los, M.S. Mazzola. Phys. Rev. B, 65, 165319 (2002). DOI: 10.1103/PhysRevB.65.165319
  123. G. Vincent, D. Bois, P. Pinard. J. Appl. Phys., 46, 5173 (1975). DOI: 10.1063/1.322194
  124. D.L. Losee. J. Appl. Phys., 46, 2204 (1975). DOI: 10.1063/1.321865
  125. J. Bardeen, G.L. Pearson. Phys. Rev., 75, 865 (1949)
  126. J.C. Bourgoin, J. Krynicki, B. Blanchard. Phys. Status Solidi, 52, 293 (1979). DOI: 10.1002/pssa.2210520132
  127. N.A. Poklonskiy, S.A. Vyrko, A.N. Derevyago. Zhurnal BGU. Fizika, 2 (2), 28 (2020) (in Russian)
  128. S. Nath, J.I.B. Wilson. Diam. Relat. Mater., 5, 65 (1996). DOI: 10.1016/0925-9635(96)80007-0
  129. Y. Koide, S. Koizumi, H. Kanda, M. Suzuki, H. Yoshida, N. Sakuma, T. Ono, T. Sakai. Diam. Relat. Mater., 14, 2011 (2005). DOI: 10.1016/j.diamond.2005.08.006
  130. V.I. Polyakov, A.I. Rukovishnikov, B.M. Garin, L.A. Avdeeva, R. Heidinger, V.V. Parshin, V.G. Ralchenko. Diam. Relat. Mater., 14, 604 (2005). DOI: 10.1016/j.diamond.2004.10.001
  131. A.J. Chiquito, O.M. Berengue, E. Diagonel, J.C. Galzerani, J.R. Moro. J. Appl. Phys., 101 (3), 033714 (2007). DOI: 10.1063/1.2436984
  132. V.I. Zubkov, O.V. Kucherova, S.A. Bogdanov, A.V. Zubkova, J.E. Butler, V.A. Ilyin, A.V. Afanas'ev, A.L. Vikharev. J. Appl. Phys., 118, 145703 (2015). DOI: 10.1063/1.4932664
  133. V.I. Zubkov, A.V. Solomnikova, J.E. Post, E. Gaillou, J.E. Butler. Diam. Relat. Mater., 72, 87 (2017). DOI: 10.1016/j.diamond.2017.01.011
  134. A.T. Collins, E.C. Lightowlers. Phys. Rev., 171, 843 (1968)
  135. F. Capasso, G. Margaritondo (eds.). Heterojunction Band Discontinuities: Physics and Device Applications (North-Holland, Amsterdam, 1987)
  136. W.-H. Chang, W.Y. Chen, M.C. Cheng, C.Y. Lai, T.M. Hsu, N.-T. Yeh, J.-I. Chyi. Phys. Rev. B, 64, 125315 (2001). DOI: 10.1103/PhysRevB.64.125315
  137. V.I. Zubkov, C.M.A. Kapteyn, A.V. Solomonov, D. Bimberg. J. Phys.: Condens. Matter., 17 (15), 2435 (2005). DOI: 10.1088/0953-8984/17/15/014
  138. V.I. Zubkov, I.S. Shulgunova, A.V. Solomonov, M. Geller, A. Marent, D. Bimberg, A.E. Zhukov, E.S. Semenova, V.M. Ustinov. Izvestiya RAN. Seriya fizicheskaya, 71 (111), 2007 (in Russian)
  139. V.I. Zubkov, I.V. Ivanova, M. Weyers. Appl. Phys. Lett., 119, 043503 (2021). DOI: 10.1063/5.0056842
  140. S. Zi. Physics of Semiconductor Devices (Mir, M., 1984)
  141. O.V. Kucherova, V.I. Zubkov, E.O. Tsvelev, I.N. Yakovlev, A.V. Solomonov. Zavodskaya laboratoriya. Diagnostika materialov, 76 (3), 24 (2010) (in Russian)
  142. V.I. Zubkov, O.V. Kucherova, I.N. Yakovlev, A.V. Solomonov. Mikroelektronika, 44, 234 (2015) (in Russian)
  143. E. Gaillou, J.E. Post, D. Rost, J.E. Butler. Am. Mineral., 97, 1 (2012). DOI: 10.2138/am.2012.3925
  144. S.M. Ryvkin. Fotoelektricheskiye yavleniya v poluprovodnikakh (Fizmatgiz, M., 1963) (in Russian)
  145. J.W. Glesener, K.A. Snail, A.A. Morrish. Appl. Phys. Lett., 62, 181 (1993)
  146. H. Pinto, R. Jones, J.P. Goss, P.R. Briddon. J. Phys.: Conf. Ser., 281 (1), 012023 (2011). DOI: 10.1088/1742-6596/281/1/012023
  147. G.A. Buga, S.G. Blank, V.D. Terent'ev, S.A. Kuznetsov, M.S. Nosukhin, S.A. Kul'bachinskiy, V.A. Krechetov, A.V. Kytin, V.G. Kytin. ZhETF, 131, 662 (2007) (in Russian)
  148. V.I. Fistul'. Sil'nolegirovannye provodniki (Nauka, M., 1967) (in Russian)
  149. K. Thonke. Semicond. Sci. Technol., 18, S20 (2003). DOI: 10.1088/0268-1242/18/3/303
  150. T. Inushima, T. Matsushita, S. Ohya, H. Shiomi. Diam. Relat. Mater., 9 (3), 1066 (2000). DOI: 10.1016/S0925-9635(00)00226-0
  151. K. Oyama, S.-G. Ri, H. Kato, M. Ogura, T. Makino, D. Takeuchi, N. Tokuda, H. Okushi, S. Yamasaki. Appl. Phys. Lett., 94, 152109 (2009). DOI: 10.1063/1.3120560

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru