Thermoreflectometry of single crystals of mercury selenide in the range of 35-300 K in a fiber-optic pump-probe" scheme with a Fabry-Perot interferometer
Lonchakov A. T.
1, Bobin S. B.
1, Kotov A. N.
2, Starostin A. A.
2, Shangin V. V.
21M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
2Institute of Thermal Physics, Ural Branch of the Russian Academy of Science, Yekaterinburg, Russia
Email: astar2006@mail.ru
A study of the reflection of infrared radiation at a wavelength of 1530 nm from the surface of HgSe single crystals in a two-beam pump-probe fiber-optic scheme was carried out using the thermoreflectometry (TR) method with a Fabry-Perot interferometer (FP). Along with the "high-temperature" anomaly of the probe laser signal (at T > 100 K) in the relaxation region, a "low-temperature" anomaly was revealed in the heating region, consisting in a change in signal polarity at T < 50 K. A qualitative interpretation of the observed features of the relative intensity of the reflected signal in the region of heating and relaxation is proposed, based on the hypothesis of two types of energy barriers, separating the bulk chiral states from the Fermi-arc surface states. Keywords: thermal reflection, interferometer, mercury selenide, Weyl nodes.
- A.A. Starostin, V.V. Shangin, A.T. Lonchakov, A.N. Kotov, S.B. Bobin, Ann. der Phys., 532, 1900586 (2020). DOI: 10.1002/andp.201900586
- E. Romanova, Yu. Kuzyutkina, V. Shiryaev, N. Abdel-Moneim, D. Furniss, T. Benson, A. Seddon, S. Guizard, J. Non-Cryst. Solids, 480, 13 (2018). DOI: 10.1016/j.jnoncrysol.2017.03.031
- G.S. Landsberg, Optika (Fizmatlit, M., 2010) (in Russian)
- S.B. Bobin, A.T. Lonchakov, V.V. Deryushkin, V.N. Neverov, J. Phys.: Condens. Matter, 31, 115701 (2019). DOI: 10.1088/1361-648X/aafcf4
- A.T. Lonchakov, S.B. Bobin, V.V. Deryushkin, V.N. Neverov, J. Phys.: Condens. Matter, 31, 405706 (2019). DOI: 10.1088/1361-648X/ab2b30
- P.J.W. Moll, N.L. Nair, T. Helm, A.C. Potter, I. Kimchi, A. Vishwanath, J.G. Analytis, Nature, 535, 266 (2016). DOI: 10.1038/nature18276
- V.F. Kabanov, A.I. Mikhailov, M.V. Gavrikov, Pis'ma Zh. Tekh. Fiz., 48 (16), 10 (2022) (in Russian). DOI: 10.21883/PJTF.2022.16.53199.19220
- T. Dietl, W. Szymanska, J. Phys. Chem. Solids, 39, 1041 (1978). DOI: 10.1016/0022-3697(78)90156-7
- B.Q. Lv, N. Xu, H.M. Weng, J.Z. Ma, P. Richard, X.C. Huang, L.X. Zhao, G.F. Chen, C.E. Matt, F. Bisti, V.N. Strocov, J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi, H. Ding, Nat. Phys., 11, 724 (2015). DOI: 10.1038/nphys3426
- F. Arnold, C. Shekhar, S.-C. Wu, Y. Sun, R.D. dos Reis, N. Kumar, M. Naumann, M.O. Ajeesh, M. Schmidt, A.G. Grushin, J.H. Bardarson, M. Baenitz, D. Sokolov, H. Borrmann, M. Nicklas, C. Felser, E. Hassinger, B. Yan, Nat. Commun., 7, 11615 (2016). DOI: 10.1038/ncomms11615
- S.-Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T.-R. Chang, H. Zheng, V.N. Strocov, D.S. Sanchez, G. Chang, C. Zhang, D. Mou, Y. Wu, L. Huang, C.-C. Lee, S.-M. Huang, B. Wang, A. Bansil, H.-T. Jeng, T. Neupert, A. Kaminski, H. Lin, S. Jia, M.Z. Hasan, Nat. Phys., 11, 748 (2015). DOI: 10.1038/nphys3437
- D.-F. Xu, Y.-P. Du, Z. Wang, Y.-P. Li, X.-H. Niu, Q. Yao, D. Pavel, Z.-A. Xu, X.-G. Wan, D.-L. Feng, Chin. Phys. Lett., 32, 107101 (2015). DOI: 10.1088/0256-307X/32/10/107101
- N. Xu, G. Autes, C. Matt, B. Lv, M. Yao, F. Bisti, V. Strocov, D. Gawryluk, E. Pomjakushina, K. Conder, N. Plumb, M. Radovic, T. Qian, O. Yazyev, J. Mesot, H. Ding, M. Shi, Phys. Rev. Lett., 118, 106406 (2017). DOI: 10.1103/PhysRevLett.118.106406
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.