Features of focusing of a laser beam of laser ablation in supercritical carbon dioxide
Epifanov E. O.1, Rybaltovsky A. O.1,2, Minaev N. V.1, Yusupov V. I.1
1Institute of Photon Technologies, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk, Moscow, Russia
2Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
Email: rammic0192@gmail.com
features of the phenomena of a laser nanosecond radiation In supercritical carbon dioxide are revealed. It is shown that the presence of a supercritical fluid leads to the expansion of the structures formed on the target in comparison with the air media. It has been suggested that the resulting magnification effect is due to the defocusing of the system, which causes the formation of the lens impact. Obtaining useful results is possible with the use of various technologies of laser ablation and microstructuring in supercritical fluids. Keywords: nanosecond laser radiation, supercritical fluid, metal target, fluctuations.
- K. Saitow, T. Yamamura, T. Minami, J. Phys. Chem. C, 112, 18340 (2008). DOI: 10.1021/jp805978g
- D. Sanli, S.E. Bozbag, C. Erkey, J. Mater. Sci., 47, 2995 (2012). DOI: 10.1007/s10853-011-6054-y
- A. Rybaltovskii, N. Minaev, S. Tsypina, S. Minaeva, V. Yusupov, Polymers, 13, 3525 (2021). DOI: 10.3390/polym13203525
- O. Parenago, A. Rybaltovsky, E. Epifanov, A. Shubnyi, G. Bragina, A. Lazhko, D. Khmelenin, V. Yusupov, N. Minaev, Molecules, 25, 5807 (2020). DOI: 10.3390/molecules25245807
- M. Labusch, S. Puthenkalam, E. Cleve, S. Barcikowski, S. Reichenberger, J. Supercrit. Fluids, 169, 105100 (2021). DOI: 10.1016/j.supflu.2020.105100
- A. Rybaltovsky, E. Epifanov, D. Khmelenin, A. Shubny, Y. Zavorotny, V. Yusupov, N. Minaev, Nanomaterials, 11, 1553 (2021). DOI: 10.3390/nano11061553
- S. Nakahara, S. Stauss, T. Kato, T. Sasaki, K. Terashima, J. Appl. Phys., 109, 123304 (2011). DOI: 10.1063/1.3599887
- R.D. Oparin, Y.A. Vaksler, M.A. Krestyaninov, A. Idrissi, S.V. Shishkina, M.G. Kiselev, J. Supercrit. Fluids, 152, 104547 (2019). DOI: 10.1016/j.supflu.2019.104547
- R.D. Oparin, K.V. Belov, I.A. Khodov, A.A. Dyshin, M.G. Kiselev, Russ. J. Phys. Chem. B, 15, 1157 (2021). DOI: 10.1134/S1990793121070101
- J.A. White, B.S. Maccabee, Phys. Rev. Lett., 26, 1468 (1971). DOI: 10.1103/PhysRevLett.26.1468
- B. Sedunov, Am. J. Anal. Chem., 3, 899 (2012). DOI: 10.4236/ajac.2012.312A119
- E. Mareev, V. Aleshkevich, F. Potemkin, V. Bagratashvili, N. Minaev, V. Gordienko, Opt. Express, 26, 13229 (2018). DOI: 10.1364/OE.26.013229
- E.O. Epifanov, A.G. Shubnyi, N.V. Minayev, A.O. Rybaltovskiy, V.I. Yusupov, O.P. Parenago, Russ. J. Phys. Chem. B, 14, 1103 (2020). DOI: 10.1134/S1990793120070052
- V. Zhigarkov, I. Volchkov, V. Yusupov, B. Chichkov, Nanomaterials, 11, 2584 (2021). DOI: 10.3390/nano11102584
- D.E. Wetzler, P.F. Aramendi a, M.L. Japas, R. Fernandez-Prini, Int. J. Thermophys., 19, 27 (1998). DOI: 10.1023/A:1021442901002
- C. Hu, J.R. Whinnery, Appl. Opt., 12, 72 (1973). DOI: 10.1364/AO.12.000072
- S.J. Sheldon, L.V. Knight, J.M. Thorne, Appl. Opt., 21, 1663 (1982). DOI: 10.1364/AO.21.001663
- G.B. Rieker, J.B. Jeffries, R.K. Hanson, Appl. Phys. B, 94, 51 (2009). DOI: 10.1007/s00340-008-3280-3
- E.I. Mareev, V.A. Aleshkevich, F.V. Potemkin, N.V. Minaev, V.M. Gordienko, Russ. J. Phys. Chem. B, 13, 1214 (2019). DOI: 10.1134/S1990793119070261
- Search for species data by chemical formula [Electronic source]. https://webbook.nist.gov/chemistry/form-ser/
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.