Decomposition of carbon dioxide in a discharge maintained by continuous focused sub-terahetz radiation at atmospheric pressure
Sintsov S. V.
1, Mansfeld D. A.
1, Veselov A. P.
1, Fokin A. P.
1, Ananichev A. A.
1, Glyavin M. Yu.
1, Vodopyanov A. V.
11Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: sins@ipfran.ru
For the first time, experiments were carried out on the decomposition of carbon dioxide in a plasma torch maintained by continuous focused gyrotron radiation with a frequency of 263 GHz in an argon flow at atmospheric pressure. It is shown that, despite the decrease in the electron density by a factor of 5, when 3% carbon dioxide is added to the plasma-forming gas, it is possible to achieve its degree of conversion of 22% due to the nonequilibrium nature of maintaining the discharge. Thus, the prospects of using high-power electromagnetic radiation in the sub-terahertz range for solving plasma-chemical problems of the decomposition of highly stable molecules have been demonstrated. Keywords: microwave discharge, nonequilibrium plasma, gyrotron, subterahertz radiation, CO2 decomposition. Keywords: microwave discharge, nonequilibrium plasma, gyrotron, subterahertz radiation, CO2 decomposition.
- A. Bogaerts, T. Kozak, K. van Laer, R. Snoeckx, Faraday Discuss., 183, 217 (2015). DOI: 10.1039/C5FD00053J
- D. Yap, J.-M. Tatibouet, C. Batiot-Dupeyrat, J. CO2 Util., 12, 54 (2015). DOI: 10.1016/j.jcou.2015.07.002
- D. Mansfeld, S. Sintsov, N. Chekmarev, A. Vodopyanov, J. CO2 Util., 40, 101197 (2020). DOI: 10.1016/j.jcou.2020.101197
- M.Yu. Glyavin, M.V. Morozkin, A.I. Tsvetkov, L.V. Lubyako, G.Yu. Golubiatnikov, A.N. Kuftin, V.E. Zapevalov, V.V. Kholoptsev, A.G. Eremeev, A.S. Sedov, V.I. Malygin, A.V. Chirkov, A.P. Fokin, E.V. Sokolov, G.G. Denisov, Radiophys. Quantum Electron., 58 (9), 639 (2016). DOI: 10.1007/s11141-016-9636-3
- A.V. Sidorov, J. Phys. D: Appl. Phys., 55 (29), 293001 (2022). DOI: 10.1088/1361-6463/ac5556
- A. Litvak, G. Denisov, M. Glyavin, IEEE J. Microwaves, 1 (1), 260 (2021). DOI: 10.1109/JMW.2020.3030917
- S.V. Sintsov, A.V. Vodopyanov, M.E. Viktorov, M.V. Morozkin, M.Yu. Glyavin, J. Infrared Millim. Terahertz Waves, 41 (6), 711 (2020). DOI: 10.1007/s10762-020-00694-2
- N. Konjevic, M. Ivkovic, N. Sakan, Spectrochim. Acta B, 76, 16 (2012). DOI: 10.1016/j.sab.2012.06.026
- Yu.P. Raizer, Gas discharge physics (Springer, N.Y., 1991)
- L.S. Polak, A.A. Ovsyannikov, D.I. Slovetskii, F.B. Vurzel', Teoreticheskaya i prikladnaya plazmokhimiya (Nauka, M., 1975) (in Russian)
- D.I. Slovetskii, in Khimiya plazmy, Vol. 1, Ed. by B.M. Smirnov (Atomizdat, M., 1974), pp. 156--202 (in Russian)
- V.D. Rusanov, A.A. Fridman, G.V. Sholin, in Khimiya plazmy, Vol. 5, Ed. by B.M. Smirnov (Atomizdat, M., 1978), pp. 222--241 (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.