Current Characteristics of a High-Current Electron Gun with Multi-Gap Initiation of Explosive Emission by Dielectric Surface Flashover
Petrov V.I. 1,2, Kiziridi P.P. 1, Ozur G.E. 1
1Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
2Tomsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia

Current characteristics of a plasma-filled, high-current electron gun at different accelerating voltages and densities of plasma preliminary filling the space between the cahode and collector have been investigated. Multi-gap initiation of explosive emission is performed with the use of parallel operated, resistively decoupled arc plasma sources which electrodes and tube ceramic isolators are built-in to the explosive-emission cathode. Experiments have demonstrated operability of high-current electron gun with a new cathode assembly at accelerating voltage up to 30 kV and its good emissivity (average in area current density) which was approximately 1.4-2.4times higher than an emissivity of traditional electron gun with plasma anode and multi-wire copper cathode. Keywords: high-current electron beams, explosive emission, cathode assembly, multi-gap initiation, dielectric surface flashover.
  1. S.N. Meisner, E.V. Yakovlev, V.O. Semin, L.L. Meisner, V.P. Rotshtein, A.A. Neiman, F. D'yachenko. Appl. Surf. Sci., 437, 217 (2018).
  2. Y. Uno, A. Okada, K. Uemura, P. Raharjo, T. Furukawa, K. Karato. Precis. Eng., 29, 449 (2005). DOI:10.1016/j.precisioneng.2004.12.005
  3. J.W. Murray, A.T. Clare. J. Mater. Process. Tech., 212, 2642 (2012).
  4. G.E. Ozur, D.I. Proskurovsky. Plasma Phys. Reports, 44 (1), 18 (2018). DOI: 10.1134/S1063780X18010130
  5. L.L. Meisner, V.P. Rotshtein, V.O. Semin, S.N. Meisner, A.B. Markov, E.V. Yakovlev, F.A. D'yachenko, A.A. Neiman, E.Yu. Gudimova. Surf. Coat. Technol., 404, 12644 (2020).
  6. J.W. Murray, P.K. Kinnell, A.H. Cannon, B. Bailey, A.T. Clare. Precis. Eng., 37, 443 (2013).
  7. B. Gao, L. Hu, S. Li, Y. Hao, Y. Zhang, G. Tu, T. Grosdidier. Appl. Surf. Sci., 346, 147 (2015).
  8. P.P. Kiziridi, G.E. Ozur, Tech. Phys. Lett., 65 (2), 297 (2020). DOI: 10.1134/S1063784220020097
  9. I.G. Kesaev. Katodniye protsessy elektricheskoy dugi (Nauka, M., 1968) (in Russian)
  10. G.A. Mesyats, D.I. Proskurovsky. Impulsny elektrichesky razryad v vakuume (Nauka, Novosibirsk, 1984) (in Russian)
  11. G.A. Mesyats. Ektony v vakuumnom razryade: proboy, iskra, duga (Nauka, M., 2000) (in Russian)
  12. G.E. Ozur. Proc. of the 25th Int. Symp. on Discharges and Electrical Insulation in Vacuum (Tomsk, Russia, 2012), p. 580. DOI: 10.1109/DEIV.2012.6412586
  13. E.I. Lutsenko, N.D. Sereda, L.M. Kontsevoy. ZhTF., 45 (4), 789 (1975). (in Russian)
  14. E.I. Lutsenko, N.D. Sereda, L.M. Kontsevoy. Fizika Plazmy, 2 (1), 72 (1976). (in Russian)
  15. E.I. Lutsenko, N.D. Sereda, A.F. Tseluiko. ZhTF., 58 (7), 1299 (1988). (in Russian)
  16. G.E. Ozur, P.P. Kiziridi. Proc. of the 7th International Congress on Energy Fluxes and Radiation Effects (Tomsk, Russia, 2020), p. 178. DOI:10.1109/EFRE47760.2020.9242114
  17. M.V. Nezlin. Dinamika puchkov v plazme (Energoatomizdat, M., 1982). (in Russian)
  18. A.V. Gordeev. Fizika Plazmy, 32 (9), 847 (2006). (in Russian)
  19. D.I. Proskurovsky, V.F. Pushkarev. ZhTF, 49 (12), 2611 (1979). (in Russian)
  20. M.A. Lutz. IEEE Trans. Plasma Sci., 2 (1), 1 (1974)
  21. W.H. Bostik. Phys. Rev. D, 104 (2), 292 (1956).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245