Structure and stability of composite gels based on collagen and carboxymethylcellulose
Nashchekina Y.А.1, Konson V.A.1, Sirotkina M.Y.1, Nashchekin А.V.
1Institute of Cytology Russian Academy of Science, Saint-Petersburg, Russia
Email: nashchekina.yu@mail.ru
The creation of biocompatible gels, based on type I collagen is studied. To improve the mechanical properties, 10-30% carboxymethylcellulose (CMC) was added to the collagen gel. It is shown that with an increase in the CMC content up to 30%, the stability of composite gels increases. With the help of scanning electron microscopy it is shown, that the ability of collagen to form native fibrils decreases with the addition of CMC. It was also shown by electrophoresis that the presence of CMC increases the rate of degradation of the composite collagen gel. Keywords: type I collagen, carboxymethylcellulose, composite collagen gels, degradation.
- A. Cipitria, M. Salmeron-Sanchez. Adv Healthc Mater., 6 (15), 1700052 (2017). DOI: 10.1002/adhm.201700052
- K. Gelse, E. Poschl, T. Aigner. Adv. Drug. Deliv Rev., 12 (55), 1531 (2003). DOI: 10.1016/j.addr.2003.08.002
- F. Ruedinger, A. Lavrentieva, C. Blume, I. Pepelanova, T. Scheper. Appl. Microbiol. Biotechnol., 2 (99), 623 (2015). DOI: 10.1007/s00253-014-6253-y
- J.L. Drury, D.J. Mooney. Biomaterials, 24 (24), 4337 (2003). DOI: 10.1016/s0142-9612(03)00340-5
- R.S. Ashton, A. Banerjee, S. Punyani, D.V. Schaffer, R.S. Kane. Biomaterials, 36 (28), 5518 (2007). DOI: 10.1016/j.biomaterials.2007.08.038
- M.W. Tibbitt, K.S. Anseth. Biotechnol Bioeng., 4 (103), 655 (2009). DOI: 10.1002/bit.22361
- D. Fan, U. Staufer, A. Accardo. Bioengineering (Basel), 4 (6), 113 (2019). DOI: 10.3390/bioengineering6040113
- K. Gelse, E. Poschl, T. Aigner. Adv. Drug Deliv Rev., 12 (55), 1531 (2003). DOI: 10.1016/j.addr.2003.08.002
- L. Salvatore, N. Gallo, M.L. Natali, A. Terzi, A. Sannino, M. Madaghiele. Front Bioeng. Biotechnol., 9, 644595 (2021). DOI: 10.3389/fbioe.2021.644595
- C. Somaiah, A. Kumar, D. Mawrie, A. Sharma, S.D. Patil, J. Bhattacharyya, R. Swaminathan, B.G. Jaganathan. PLoS ONE, 12 (10), 1 (2015). DOI: 10.1371/journal.pone.0145068
- P. Gillery, F.X. Maquart, J.P. Borel. Exp. Cell. Res., 1 (167), 29 (1986). DOI: 10.1016/0014-4827(86)90201-6
- K. Adamiak, A. Sionkowska. Int. J. Biol. Macromol., 161, 550 (2020). DOI: 10.1016/j.ijbiomac.2020.06.075
- G.D. Nicodemus, S.J. Bryant. Tissue Eng. Part B Rev., 2 (14), 149 (2008). DOI: 10.1089/ten.teb.2007.0332
- E.D. Abdolahinia, B. Jafari, S. Parvizpour, J. Barar, S. Nadri, Y. Omidi. BioImpacts, 2 (11), 111 (2021). DOI: 10.34172/bi.2021.18
- M. Zhang, C. Ding, J. Yang, S. Lin, L. Chen, L. Huang. Carbohydr Polym., 137, 410 (2016). DOI: 10.1016/j.carbpol.2015.10.098
- C. Ding, R. Shi, Z. Zheng, M. Zhang. Connect Tissue Res., 1 (59), 66 (2018). DOI: 10.1080/03008207.2017.1306059
- C.K. Bektas, I. Kimiz, A. Sendemir, V. Hasirci., N. Hasirci. J. Biomater. Sci. Polym. Ed., 14 (29), 1764 (2018). DOI: 10.1080/09205063.2018.1498718
- Y. Wang, K. Kanie, T. Takezawa, M. Horikawa, K. Kaneko, A. Sugimoto, A. Yamawaki-Ogata, Y. Narita, R. Kato. Carbohydr Polym., 285, 119223 (2022). DOI: 10.1016/j.carbpol.2022.119223
- O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall. J. Biol. Chem., 1 (193), 265 (1951)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.