Electrical and optical properties of thin-film bismuth ferrite
Dybov V.A.1, Kalinin Yu. E. 1, Kamynin A. A. 1, Kashirin M. A. 1, Makagonov V.A. 1, Nikonov A. E. 1, Serikov D. V. 1, Sitnikov A.V. 1
1Voronezh State Technical University, Voronezh, Russia
Email: dybovvlad@gmail.com, kalinin48@mail.ru, silentcurve@gmail.com, mnitro@yandex.ru, vlad_makagonov@mail.ru, nikonov.sasha1994@gmail.com, sitnikov04@mail.ru

PDF
The optical and electrical properties of bismuth ferrite thin films obtained by high-frequency magnetron sputtering in an atmosphere of argon and oxygen (80%+20%) has been studied. Investigations of the optical properties have shown that for polycrystalline bismuth ferrite films the optical band gap is ~2.3 eV, which is in the range of given in the literature values. The dependences of the specific electrical conductivity on the magnitude of the electric field has been studied for the synthesized films. It has been established that the electrical conductivity does not depend on the electric field strength up to the value of E=2.1·106 V/m. The experimental results are discussed in terms of the model of charge carrier injection from aluminum electrode into the conduction band of bismuth ferrite. Keywords: electrical conductivity, strong electric fields, optical absorption coefficient, memristor effect.
  1. G.J. Exarhos, X.D. Zhou. Thin Solid Films, 515 (18), 7025 (2007). DOI:10.1016/j.tsf.2007.03.014
  2. E. Fortunato, D. Ginley, H. Hosono, D.C. Paine. MRS Bulletin, 32 (3), 242 (2007). DOI:10.1557/mrs2007.29
  3. S.J. Lee, C.S. Hwang, J.E. Pi, J.H. Yang, C.W. Byun, H.Y. Chu, K.I. Cho, S.H. Cho. Etri J., 37 (6), 1135 (2015). DOI:10.4218/etrij.15.0114.0743
  4. M.D. Rossell, R. Erni, M.P. Prange, J.C. Idrobo, W. Luo, R.J. Zeches, S.T. Pantelides, R. Ramesh. Phys. Rev. Lett., 108 (4), 047601 (2012). DOI:10.1103/PhysRevLett.108.047601
  5. O.B. Romanova, V.V. Kretinin, S.S. Aplesnin, M.N. Sitnikov, L.V. Udod, K.I. Yanushkevich. Phys. Solid State, 63 (6), 897 (2021). DOI:10.1134/S1063783421060184
  6. J.R. Teague, R. Gerson, W.J. James. Solid State Commun., 8 (13), 1073 (1970). DOI:10.1016/0038-1098(70)90262-0
  7. Y.H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S. Han, Q. He, N. Balke, C.-H. Yang, D. Lee, W. Hu, Q. Zhan, P.-L. Yang, A. Fraile-Rodri guez, A. Scholl, S.X. Wang, R. Ramesh. Nature Mater., 7, 478 (2008). DOI:10.1038/nmat2184
  8. P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski. J. Phys C: Solid State Phys., 13 (10), 1931 (1980). DOI:10.1088/0022-3719/13/10/012
  9. F. Scott. J. Mater. Chem., 22, 4567 (2012). DOI:10.1039/C2JM16137K
  10. A.P. Pyatakov, A.K. Zvezdin. Phys.-Usp., 55 (6), 557 (2012). DOI:10.3367/UFNe.0182.201206b.0593
  11. J.F. Li, J.L. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A.P. Pyatakov, A.K. Zvezdin, D. Viehland. Appl. Phys. Lett., 84 (25), 5261 (2004). DOI:10.1063/1.1764944
  12. S.R. Jian, H.W. Chang, Y.C. Tseng, P.H. Chen, J.Y. Juang. Nanoscale Res. Lett., 8, 297 (2013). DOI:10.1186/1556-276X-8-297
  13. D. Sando, A. Barthelemy, M. Bibes. J. Phys.: Condens. Matter., 26 (47), 473201 (2014). DOI:10.1088/0953-8984/26/47/473201
  14. Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications. ed. by D. Ielmini, R. Waser (Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim, Germany, 2016)
  15. S.A. Gridnev, Yu.E. Kalinin, V.A. Dybov, I.I. Popov, M.A. Kashirin, N.A. Tolstykh. J. Alloys Compd., 918, 165610 (2022). DOI:10.1016/j.jallcom.2022.165610
  16. R.A. De Souza, V. Metlenko, D. Park, T.E. Weirich. Phys. Rev. B, 85 (17), 174109 (2012). DOI:10.1103/PhysRevB.85.174109
  17. J.D. Cawley, W. John, A.R. Cooper. J. Am. Ceram. Soc., 74 (9), 2086 (1991). DOI:10.1111/j.1151-2916.1991.tb08264.x
  18. X. Pan, Y. Shuai, C. Wu, W. Luo, X. Sun, H. Zeng, S. Zhou, R. Bottger, X. Ou, T. Mikolajick, W. Zhang, H. Schmidt. Appl. Phys. Lett., 108 (3), 032904 (2016). DOI:10.1063/1.4940372
  19. C. Wang, J. Sun, W. Ni, B. Yue, F. Hong, H. Liu, Z. Cheng. J. Am. Ceram. Soc., 102 (11), 6705 (2019). DOI:10.1111/jace.16522
  20. K.A. Nasyrov, V.A. Gritsenko. Phys.-Usp., 56 (10)999 (2013)
  21. J.I. Frenkel. Phys. Rev., 54, 647 (1938). DOI:10.1103/PhysRev.54.647
  22. M. Sumets, V. Ievlev, V. Dybov, A. Kostyuchenko, D. Serikov, S. Kannykin, E. Belonogov. J. Mater.Sci.Mater.Electron., 30 (17), 16562 (2019). DOI: 10.1007/s10854-019-02033-1
  23. Yu.E. Kalinin, A.V. Sitnikov, V.V. Rylkov, K.G. Korolev, G.S. Ryzhkova. Vestnik VGTU, 12 (6), 4 (2016). (in Russian)
  24. S.M. Selbach, M.A. Einarsrud, T. Grande. Chem. Mater., 21 (1), 169 (2009). DOI:10.1021/cm802607p
  25. N. Wang, X. Luo, L. Han, Z. Zhang, R. Zhang, H. Olin, Y. Yang. Nano-Micro Lett., 12, 81 (2020). DOI:10.1007/s40820-020-00420-6
  26. B.D. Viezbicke, S. Patel, B.E.Davis, D.P. Birnie. Phys. Stat. Sol. B, 252, 1700 (2015). DOI:10.1002/pssb.201552007
  27. D. Sando, C. Carretero, M.N. Grisolia, A Barthelemy, V. Nagarajan, M. Bibes. Adv. Opt. Mater., 6 (2), 1700836 (2017). DOI:10.1002/adom.201700836
  28. P. Machado, I. Can o, C. Menendez, C. Cazorla, H. Tan, I. Fina, M. Campoy-Quiles, C. Escudero, M. Tallarida, M. Coll. J. Mater. Chem. C, 9 (1), 330 (2021). DOI:10.1039/d0tc04304d
  29. F. Carren o, J.C. Marti nezAnton, E. Bernabeu. Rev. Sci. Instrum., 65 (8), 2489 (1994). DOI:10.1063/1.1144707
  30. A.R. Ansari, A.H. Hammad, M.Sh. Abdel-wahab, M. Shariq, M. Imran. Opt. Quant. Electron., 52, 426(2020). DOI:10.1007/s11082-020-02535-x
  31. D.J. Huang, H.M. Deng, F. Chen, H. Deng, P.X. Yang, J.H.Chu. J. Phys.: Conf. Ser., 276, 012168 (2011). DOI:10.1088/1742-6596/276/1/012168
  32. H. Shima, H. Naganuma, S. Okamura. in Materials Science --- Advanced Topics (IntechOpen London, United Kingdom, 2013), DOI:10.5772/54908DOI:10.5772/54908 p. 33
  33. N. Mott, E. Davis Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)
  34. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams. Nature, 53, 80 (2008). DOI:10.1038/nature06932
  35. D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.S. Li, G.S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang. Nat. Nanotechnol., 5 (2), 148, (2010). DOI:10.1038/nnano.2009.456
  36. W. Zhang, R. Mazzarello, M. Wuttig, E. Ma. Nat. Rev. Mater., 4, 150 (2019). DOI:10.1038/s41578-018-0076-x
  37. N.A. Bogoslovskiy, K.D. Tsendin. Semiconductors, 46 (5), 559 (2012). DOI:10.1134/S1063782612050065
  38. L.O. Chua. IEEE Trans. Crcuits Syst. I Regul. Pap., 18 (5), 507 (1971). DOI:10.1109/TCT.1971.1083337
  39. A. Mehonic, A.L. Shluger, D. Gao, I. Valov, E. Miranda, D. Ielmini, A. Bricalli, E. Ambrosi, C. Li, J.J. Yang, Q. Xia, A.J. Kenyon. Adv. Mater., 30 (43), 1801187 (2018). DOI:10.1002/adma.201801187

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru