Generalized effective-field approximation for inhomogeneous medium with inclusions in multilayered shells
Lavrov I. V. 1, Bardushkin V. V. 1, Yakovlev V. B. 1
1 Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, Moscow, Russia
Email: iglavr@mail.ru, bardushkin@mail.ru, yakvb@mail.ru

PDF
An approach is proposed for calculating effective physical characteristics of a inhomogeneous medium with several levels of nesting of its microstructure - the generalized effective-field approximation. With the help of this approach, an expression is obtained for an effective permittivity tensor of an inhomogeneous medium with ellipsoidal inclusions in a multilayered shell, the boundaries of all layers of which are ellipsoids. The proposed approach allows to take into account probabilistic distributions of orientations and forms of inclusions, as well as the presence of several types of inclusions. Two cases of matrix composites are considered: 1) with spherical isotropic inclusions with a multilayered shell; 2) with ellipsoidal anisotropic inclusions with a multilayered shell. For an inhomogeneous medium with homogeneous inclusions, this approximation is shown to produce the same result as the generalized singular approximation. Keywords: inhomogeneous medium, composite, matrix, inclusion, multilayered shell, generalized effective-field approximation, generalized singular approximation, effective permittivity.
  1. H. Gleiter. Acta Mater., 48 (1), 1 (2000). DOI: 10.1016/S1359-6454(99)00285-2
  2. N.N. Trofimov, M.Z. Kanovich, E.M. Kartashov, V.I. Natrusov, A.T. Ponomarenko, V.G. Shevchenko, V.I. Sokolov, I.D. Simonov-Emelyanov. Physics of composite materials (Mir, Moscow, 2005), Vol. 1
  3. N.N. Trofimov, M.Z. Kanovich, E.M. Kartashov, V.I. Natrusov, A.T. Ponomarenko, V.G. Shevchenko, V.I. Sokolov, I.D. Simonov-Emelyanov. Physics of composite materials (Mir, Moscow, 2005), Vol. 2
  4. R.D. Averitt, D. Sarkar, N.J. Halas. Phys. Rev. Lett., 78 (22), 4217 (1997). DOI: 10.1103/PhysRevLett.78.4217
  5. J.B. Jackson, N.J. Halas. J. Phys. Chem. B, 105 (14), 2743 (2001). DOI: 10.1021/jp003868k
  6. A. Sihvola. PIER, 62, 317 (2006). DOI: 10.2528/PIER06042801
  7. D.V. Guzatov, A.A. Oraevsky, A.N. Oraevsky. Quant. Electron., 33 (9), 817 (2003). DOI: 10.1070/QE2003v033n09ABEH002505
  8. D.C. Tzarouchis, A. Sihvola. IEEE Transactions on Antennas and Propagation, 66 (1), 323 (2018). DOI: 10.1109/TAP.2017.2769688
  9. A.G. Every, Y. Tzou, D.P.H. Hasselman, R. Raj. Acta Metall. Mater., 40 (1), 123 (1992). DOI: 10.1016/0956-7151(92)90205-S
  10. S.V. Kidalov, F.M. Shakhov. Materials, 2 (4), 2467 (2009). DOI: 10.3390/ma2042467
  11. K. Pietrak, M. Kubis, M. Langowski, M. Kropielnicki, P. Wultanski. Composites Theory and Practice, 17 (4), 183 (2017). DOI: 10.5281/zenodo.1188082
  12. I.V. Lavrov, A.A. Kochetygov, V.V. Bardushkin, V.B. Yakovlev. Thermal processes in engineering, 12 (2), 78 (2020). DOI: 10.34759/tpt-2020-12-1-78-86
  13. V.Yu. Chuklanov, O.G. Selivanov. International Journal of Applied and Basic Research, 8 (1), 26 (2014)
  14. E.H. Kerner. Proc. Phys. Soc. B, 69 (8), 802 (1956)
  15. L.A. Apresyan, D.V. Vlasov, D.A. Zadorin, V.I. Krasovskii. Tech. Phys., 62 (1), 6 (2017). DOI: 10.1134/S1063784217010029
  16. V.S. Zarubin, G.N. Kuvyrkin, I.Yu. Savelieva Radio optics. MGTU named after N.E. Bauman. Electronic Journal, 3, 29 (2016). DOI: 10.7463/rdopt.0316.0846170
  17. A. Sihvola. Electromagnetic Mixing Formulas and Applications (The Institution of Electrical Engineers, London, 1999)
  18. V.I. Kolesnikov, V.V. Bardushkin, I.V. Lavrov, A.P. Sychev, V.B. Yakovlev. Dokl. Phys., 62 (9), 415 (2017). DOI: 10.1134/S1028335817090087
  19. N. Bonfoh, F. Dinzart, H. Sabar. Appl. Mathem. Modell., 87, 584 (2020). DOI: 10.1016/j.apm.2020.06.005
  20. V.I. Kolesnikov, V.B. Yakovlev, V.V. Bardushkin, I.V. Lavrov, A.P. Sychev, E.N. Yakovleva. Dokl. Phys., 58 (9), 379 (2013). DOI: 10.1134/S1028335813090012
  21. A.G. Fokin. Sov. Phys. Tech. Phys., 16, 849 (1971)
  22. S.M. Nikolsky. Course of mathematical analysis (Nauka, M., 1991), vol. 2
  23. S.R. de Groot, L.G. Suttorp. Foundations of Electrodynamics (North-Holland Publishing Company, Amsterdam, 1972)
  24. A. Sihvola, I.V. Lindell. IEEE/URSI Symposium, Syracuse, July 1988. 23.5. P. 388--391
  25. Ya.S. Dubnov. Fundamentals of vector calculus (GITTL, M., 1952), vol. 2.
  26. I.V. Lavrov, V.B. Yakovlev. Tech. Phys., 62 (7), 979 (2017). DOI: 10.1134/S106378421707009X
  27. V.I. Kolesnikov, I.V. Lavrov, V.V. Bardushkin, A.P. Sychev, V.B. Yakovlev. Dokl. Phys., 66 (5), 123 (2021). DOI: 10.1134/S1028335821050049

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru