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An approach is proposed for calculating effective physical characteristics of a inhomogeneous medium with

several levels of nesting of its microstructure — the generalized effective-field approximation. With the help of

this approach, an expression is obtained for an effective permittivity tensor of an inhomogeneous medium with

ellipsoidal inclusions in a multilayered shell, the boundaries of all layers of which are ellipsoids. The proposed

approach allows to take into account probabilistic distributions of orientations and forms of inclusions, as well as

the presence of several types of inclusions. Two cases of matrix composites are considered: 1) with spherical

isotropic inclusions with a multilayered shell; 2) with ellipsoidal anisotropic inclusions with a multilayered shell.

For an inhomogeneous medium with homogeneous inclusions, this approximation is shown to produce the same

result as the generalized singular approximation.
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Introduction

A considerable part of heterogeneous materials is charac-

terized by their nested structure, i. e. that mutual arrange-

ment of homogeneous components, when the particles of

some of them are completely immersed in the areas filled

with other components. In particular, polycrystals have a

structure with one level of nesting because the crystalline

components present in the material in the form of crystallites

are separated from each other by intergranular space,

actually constituting a separate component in the material

with a different, with respect to the crystal, structural state

of atoms [1]. Also, structures with one level of nesting

are matrix-type composites with homogeneous inclusions.

In this case, a continuous component, called the matrix,

completely surrounds the particles of other components

(inclusions) [2,3].
If the inclusions in the composite are heterogeneous,

for example, represent a homogeneous core in a single-

or multilayer shell, then the material structure has several

levels of nesting. The problem of predicting the properties

of such materials is, on the one hand, more difficult

compared to the similar problem for materials with a

single nesting level, but, on the other hand, the use

of heterogeneous inclusions provides an opportunity to

improve the desired characteristics of the materials. The

presence of the shell can significantly affect the physical

properties of the individual inclusions and, consequently, the

corresponding physical properties of the composite itself.

For example, inclusions with dielectric core and metal shell

have additional plasmon resonances compared to solid metal

particles, and their frequency position depends both on

the material and on the shape of the shell, in particular,

on its thickness [4–8].This provides additional opportunities
to control the frequency location of the plasmon resonances,

and hence the properties of the matrix composite containing

such inclusions.

However, even describing the properties of real matrix

composites with homogeneous inclusions may require a

model with more than one level of nesting. As studies [9–
11] show, the contact between inclusions and matrix in

matrix composites as well as between different inclusions

is not perfect. In particularly, in the presence of heat

flow, there is a temperature jump at the boundary between

the different components of the heterogeneous medium,

which indicates the presence of contact thermal resistance

at the boundary of the components. To account for contact

thermal resistance, a model of a composite with coated

inclusions can be used. In this case, the presence of

contact thermal resistance is modeled by a single-layer

inclusion shell with specially selected thickness and thermal

conductivity [12]. If a composite with heterogeneous

inclusions consisting of a core with a single- or multilayer

shell is considered, then to account for the non-ideal contact

between the inclusions and the matrix, an additional layer in

the shell should be introduced that will simulate the contact

resistance.

The presence in composites of impurities associated with

the peculiarities of technological processes of production

also leads to the complication of modeles for calculating

the characteristics of these materials. For example, a

syntactic foam based on an organosilicon binder and glass

microspheres contains a certain amount of water, which

as a result worsens the dielectric characteristics of the
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material [13]. Part of the water contained in the composite

may be present in the form of continuous films on the

surface of the microspheres, that requires the introduction

of an additional layer of inclusion shell to account for their

influence on the characteristics of the material.

Thus, the development of methods for predicting the

effective characteristics of heterogeneous materials having

a microstructure with several nesting levels, i. e. containing

inclusions with a multilayer shell, seems relevant. To date,

there are a number of works devoted to the prediction of the

effective properties of heterogeneous media with inclusions

in the shell. For example, in [14] a generalization of the

Maxwell−Garnett approximation to a matrix medium with

single-type spherical inclusions in a single-layer spherical

shell has been proposed. In [15], a general scheme

of generalization of the effective medium approximation

to the cases of media with heterogeneous inclusions is

given and an example of a medium with spherical in-

clusions in a single-layer shell is considered. In [16]
bilateral variational estimates of the effective permittivity

of a spheroplastic with spherical inclusions in a single-

layer shell were obtained. In [17] generalizations of the

Maxwell−Garnett approximation to matrix composites with

spherical inclusions with a multilayer shell are obtained. A

generalized effective-field approximation field for calculating

the effective characteristics of heterogeneous media with

ellipsoidal inclusions with a single-layer shell is proposed

in [18]. Special mention should be made of the work [19],
which proposed an approach for calculating the effective

thermal conductivity of a composite with unidirectional

ellipsoidal inclusions in a multilayer shell.

In the present paper, the generalized effective-field ap-

proximation [18] is extended to the case of heterogeneous

media with inclusions with a homogeneous core and a

multilayer shell with homogeneous layers, with the bound-

aries of the inclusion cores and shells assumed ellipsoidal.

The proposed approach has a high degree of generality

and can be applied both to multicomponent composites

and to polycrystals, it is also able to naturally take into

account the probability distribution of orientations and

shapes of inclusions. It is shown that in the absence

of a shell for inclusions, this approach gives the same

result as the generalized singular approximation [20]. We

consider special cases of a matrix composite with single-

type isotropic spherical inclusions with a multilayer shell,

as well as a matrix composite with an isotropic matrix and

anisotropic ellipsoidal inclusions with a multilayer shell.

1. Problem statement. Formalism using
the comparison body and Green’s
function method. Effective field

Consider a sample of volume V with boundary S of a

statistically homogeneous heterogeneous medium consisting

of inclusions of a nested structure; let N — the number of

all inclusions in the sample. A particular inclusion with

number k is considered to consist of a homogeneous core

V (k)
n , which is surrounded by a shell having homogeneous

layers V (k)
n−1, . . . ,V (k)

1 , k = 1, N, where V (k)
n−1 — the nearest

layer to the core, V (k)
1 — the outermost layer of the kth

inclusion shell. The maximum number of homogeneous

areas that make up a particular medium inclusion will

be assumed to be n. If the inclusion contains fewer

homogeneous areas, we will assume that the volumes of

the missing areas are zero. The area occupied by all kth
inclusion is denoted as V (k):

V (k) =
n
∪

i=1
V (k)

i , k = 1, N.

Let us also introduce the notation Ṽ (k)
j for the area

consisting of the layer V (k)
j and all more inner layers of

the kth inclusion shell, including the core:

Ṽ (k)
j =

n
∪

i= j
V (k)

i , k = 1, N. (1)

The volumes of all areas will be denoted in the same

way as the areas themselves. The dielectric characteristics

of the core and each shell layer of each inclusion will be

considered known, the tensors of permittivity of areas V (k)
i

will be denoted as ε
(k)
i , i = 1, n; k = 1, N. Let us also

assume that there are no free charges and double electric

layers in the medium.

Let’s assume that a constant electric field of strength E0

be applied to the boundary of this sample of heterogeneous

medium. The permittivity tensor of a given medium ε(r) is

a random piecewise constant function of coordinates:

ε(r) = ε
(k)
i , r ∈ V (k)

i , i = 1, n; k = 1, N.

The ε∗ tensor of the effective permittivity of a sample of a

given medium is defined as an operator relating the average

values of the vectors of electric induction and electric field

strength over the sample volume:

〈D〉 = ε∗〈E〉. (2)

To calculate ε∗, consider the boundary problem for the

scalar electric potential ϕ(r) in this medium (E = −∇ϕ):

∇ · ε(r)∇ϕ(r) = 0, ϕ
∣

∣

S
= −(E0 · r). (3)

To solve the problem (3), it is reasonable to consider

a similar problem for a homogeneous comparison body

having the same dimensions and shape as the sample of

heterogeneous medium [18,21]:

∇ · εc ∇ϕc(r) = 0, ϕc
∣

∣

S
= −(E0 · r), (4)

where the index
”
c“ indicates the values related to the

comparison body. Let us introduce notations for the

differences of the quantities related to problems (3) and (4):

ϕ′(r) = ϕ(r) − ϕc(r), ε′(r) = ε(r) − εc ,
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then, subtracting (4) from (3), we obtain the boundary

problem

∇ · εc∇ϕ′(r) = −∇ · ε′(r)∇ϕ(r), ϕ′
∣

∣

S
= 0. (5)

By entering the Green’s function G(r, r1)

∇ · εc∇G(r, r1) = −δ(r− r1), G(r, r1)
∣

∣

r1∈S
= 0,

the solution of problem (5) can be written as an integral [18]

ϕ′(r) =

∫

V

G(r, r1)
(

∇ · ε′(r1)∇ϕ(r1)
)

dr1. (6)

If the sample is considered unbounded, then

G(r, r1) = G(r1−r), and (6) will

ϕ′(r) =

∫

G(r1 − r)
(

∇ · ε′(r1)∇ϕ(r1)
)

dr1. (7)

Integrating (7) by parts and taking the gradient from the

left and right parts, we obtain

E′(r) =

∫

∇1 ⊗∇1G(r1 − r)ε′(r1)E(r1)dr1, (8)

where ∇1 ⊗∇1G(r1−r) — tensor of second derivatives of

the Green’s function, the upper index 1 of the Hamiltonian

differential operator means differentiation by r1. Since

E′(r) = E(r)−Ec , where Ec = const — the electric field

strength in the comparison body, from (8), we obtain the

equation for the electric field strength in the sample of the

inhomogeneous medium, which can be written as

E(r) = Ec + Q(r)
(

ε(r) − εc
)

E(r), (9)

where Q(r) — tensor integral operator whose action is

defined by the formula

Q(r)f(r) =

∫

∇1 ⊗∇1G(r1 − r)f(r1)dr1.

Due to the heterogeneous structure, the sample can

be considered to consist of a finite number of inclusions.

Note that if the heterogeneous medium is a matrix-type

composite with inclusions, the matrix can also be considered

to consist of individual grains without a shell. The shape

of matrix particles in the following discussion is assumed

to be ellipsoidal with fixed aspect ratio and orientation (a
special case of the shape of the above particles — spherical).
It should be noted that the area occupied by the matrix

can be covered with non-overlapping particles of a given

shape and orientation with any predetermined accuracy,

using particles of different sizes. In this case, the smaller

particles will fill the space left between the larger ones.

The material characteristics of all these imaginary model

particles should coincide with the material characteristics of

the matrix regardless of their size, in contrast to the material

characteristics of real inclusions, which may depend on the

size of the latter.

So, let the current point r lie inside the kth inclusion. Let

us decompose the operator Q(r) into external and internal

components with respect to the k-inclusion:

Q(r) = Q
(k)
ext(r) + Q

(k)
int (r),

then (9) will take the form

E(r)=Ec +Q
(k)
ext(r)

(

ε(r)−εc
)

E(r) + Q
(k)
int (r)

(

ε(r)−εc
)

E(r),

r ∈ V (k). (10)

Let us write out in detail the terms in (10) corre-

sponding to the external and internal components of the

operator Q(r):

Q
(k)
ext(r)

(

ε(r) − εc
)

E(r)

=
N

∑

i=1
i 6=k

∫

V (i)

∇1 ⊗∇1G(r1 − r)
(

ε(r1) − εc
)

E(r1)dr1.

Q
(k)
int (r)

(

ε(r) − εc
)

E(r)

=
n

∑

j=1

∫

V (k)
j

∇1 ⊗∇1G(r1 − r)
(

ε
(k)
j − εc

)

E(r1)dr1. (11)

The first two terms in (10) can be called the effective

field strength at a given point of the kth inclusion, which is

formed as a result of the application of an external field to

the composite sample and the presence of other inclusions

in the sample:

E
(k)
eff (r) = Ec + Q

(k)
ext(r)

(

ε(r) − εc
)

E(r), r ∈ V (k). (12)

Let’s rewrite (10) with (11), (12) in mind:

E(r) = E
(k)
eff (r) +

n
∑

j=1

∫

V (k)
j

∇1 ⊗∇1G(r1 − r)

×
(

ε
(k)
j − εc

)

E(r1)dr1, r ∈ V (k).

2. Solving the problem in the generalized
effective-field approximation for the
case of ellipsoidal boundaries of
nuclei and inclusion shell layers

Calculate the average intensities 〈E〉
(k)
j ( j = 1, n) of the

electric field in all layers of the shell and the core of the kth
inclusion:

〈E〉
(k)
j = 〈Eeff〉

(k)
j +

1

V (k)
j

n
∑

i=1

∫

V (k)
i

(∫

V (k)
j

∇1 ⊗∇1G(r1i−r)dr

)

×
(

ε
(k)
i − εc

)

E(r1i)dr1i, j = 1, n, (13)
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where

〈Eeff〉
(k)
j =

1

V (k)
j

∫

V (k)
j

E
(k)
eff (r)dr, j = 1, n

— average effective field strengths in the shell layers and

core of the k-th inclusion. In (13) the order of integration

over r and r1i (i = 1, n) is changed in averaging; this

is justified due to continuity or uniform convergence of

corresponding integrals over r and r1i in these areas [22].
Next, we will assume that the boundaries of the nuclei

and all shell layers of all inclusions are ellipsoids. Then

the areas Ṽ (k)
j ( j = 1, n) defined by expression (1) are the

insides of the corresponding ellipsoids. Let’s introduce the

designations:

g̃
(k)
j,i (r1) =

∫

V (k)
j

∇1 ⊗∇1G(r1 − r)dr, r1 ∈ V (k)
i ,

g
(k)
j,i (r1) =

∫

Ṽ (k)
j

∇1 ⊗∇1G(r1 − r)dr, r1 ∈ V (k)
i ,

j = 1, n; i = 1, n;

g
(k)
j (r1) =

∫

Ṽ (k)
j

∇1 ⊗∇1G(r1 − r)dr =

∫

Ṽ (k)
j

∇⊗∇G(r)dr,

r1 ∈ Ṽ (k)
j , j = 1, n. (14)

All tensors g
(k)
j are independent of the choice of point r1

inside the corresponding ellipsoidal area Ṽ (k)
j [23]. For

tensors g
(k)
j,i (r1) we have

g
(k)
j,i (r1) = g

(k)
j , i ≥ j . (15)

For the tensors g̃
(k)
j,i (r1) we have

g̃
(k)
j,i (r1) = g

(k)
j − g

(k)
j+1, i = j + 1, n, (16)

g̃
(k)
j, j(r1) = g

(k)
j − g

(k)
j+1, j(r1), (17)

g̃
(k)
j,i (r1) = g

(k)
j,i (r1) − g

(k)
j+1,i(r1), i ≤ j − 1. (18)

Given (14)−(18), expressions (13) will take the form

〈E〉
(k)
j = 〈Eeff〉

(k)
j +

1

V (k)
j

[

j−1
∑

i=1

∫

V (k)
i

(

g
(k)
j,i (r1i) − g

(k)
j+1,i(r1i)

)

× (ε
(k)
i − εc)E(r1i)dr1i +

∫

V (k)
j

(

g
(k)
j − g

(k)
j+1, j(r1 j)

)

(ε
(k)
j − εc)

× E(r1 j)dr1 j +

n
∑

i= j+1

(g
(k)
j − g

(k)
j+1)(ε

(k)
i − εc)V (k)

i 〈E〉
(k)
i

]

,

j = 1, n,

or

〈E〉
(k)
j =〈Eeff〉

(k)
j +

1

V (k)
j

[

j−1
∑

i=1

∫

V (k)
i

g
(k)
j,i (r1i)(ε

(k)
i −εc)E(r1i)dr1i

−

j
∑

i=1

∫

V (k)
i

g
(k)
j+1,i(r1i)(ε

(k)
i − εc)E(r1i)dr1i +

n
∑

i= j

g
(k)
j

× (ε
(k)
i − εc)V (k)

i 〈E〉
(k)
i −

n
∑

i= j+1

g
(k)
j+1(ε

(k)
i − εc)V (k)

i 〈E〉
(k)
i

]

,

(19)
j = 1, n.

Using (19), find the expression for the average field

strength in k-th inclusion

〈E〉(k) =
n

∑

j=1

f (k)
j 〈E〉

(k)
j = 〈Eeff〉

(k)

+
1

V (k)

[

n
∑

j=1

j−1
∑

i=1

∫

V (k)
i

g
(k)
j,i (r1i)(ε

(k)
i − εc)E(r1i)dr1i

−
n

∑

j=1

j
∑

i=1

∫

V (k)
i

g
(k)
j+1,i(r1i)(ε

(k)
i − εc)E(r1i)dr1i

+

n
∑

j=1

g
(k)
j

n
∑

i= j

(ε
(k)
i − εc)V (k)

i 〈E〉
(k)
i

−

n
∑

j=1

g
(k)
j+1

n
∑

i= j+1

(ε
(k)
i − εc)V (k)

i 〈E〉
(k)
i

]

, (20)

where 〈Eeff〉
(k) — the average effective field strength in

the kth inclusion:

〈Eeff〉
(k) =

n
∑

j=1

f (k)
j 〈Eeff〉

(k)
j ,

f (k)
j — the relative volume fractions of the shell and core

layers in the kth inclusion:

f (k)
j =

V (k)
j

V (k)
, j = 1, n.

It is natural to assume in (20) that

g
(k)
n+1,i(r1i) ≡ 0, i = 1, n; g

(k)
n+1 = 0. (21)

Note that in (20) in the first double sum the internal sum

at j = 1 is zero. Also in the second and fourth double

sums, in force (21), the external summation can be carried

out up to (n−1). Further, it is easy to check that the first
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two double sums compensate each other completely, and in

the third and fourth double sums most of the summands

also
”
cancel

”
each other, so for the average field strength in

the kth inclusion we obtain the following expression:

〈E〉(k) = 〈Eeff〉
(k) + g

(k)
1

n
∑

i=1

f (k)
i (ε

(k)
i − εc)〈E〉

(k)
i . (22)

The average field strength in each particular shell layer of

the k-th inclusion is related to the average field strength in

the core of the same inclusion by the linear relation

〈E〉
(k)
j = λ

(k)
jn 〈E〉

(k)
n , j = 1, n − 1, (23)

where λ
(k)
jn — tensor operator that depends on the ge-

ometric and material characteristics of this inclusion, the

comparison body, and the characteristics and arrangement

of the other inclusions in the sample. By substituting (23)
into the equation obtained by equating the right-hand

side (22) and the middle part (20), we express 〈E〉
(k)
n

through 〈Eeff〉
(k):

〈E〉(k)
n = λ

(k)
n0 〈Eeff〉

(k), (24)

where

λ
(k)
n0 =

[ n
∑

i=1

f (k)
i

(

I− g
(k)
1 (ε

(k)
i − εc)

)

λ
(k)
in

]−1

, (25)

and obviously λ(k)
nn = I.

Using (22) and (24), we connect the average field

strength in the kth inclusion with the average effective

field strength in it:

〈E〉(k) =

( n
∑

i=1

f (k)
i λ

(k)
in

)

λ
(k)
n0 〈Eeff〉

(k).

For the average field strength in the sample we obtain

〈E〉 =

N
∑

k=1

V (k)

V
〈E〉(k) =

1

V

N
∑

k=1

V (k)

( n
∑

i=1

f (k)
i λ

(k)
in

)

× λ
(k)
n0 〈Eeff〉

(k).

Let us introduce an operator 3(k) linking the average

effective field strengths in the kth inclusion and in the whole

sample:

〈Eeff〉
(k) = 3(k)〈Eeff〉, k = 1, N, (26)

and 〈Eeff〉 is calculated similarly 〈E〉:

〈Eeff〉 =
N

∑

k=1

V (k)

V
〈Eeff〉

(k).

Then the expression for 〈E〉 can be written as

〈E〉 =

〈

( n
∑

i=1

f iλin

)

λn03

〉

〈Eeff〉, (27)

where
〈

( n
∑

i=1

f iλin

)

λn03

〉

=
1

V

N
∑

k=1

V (k)

( n
∑

i=1

f (k)
i λ

(k)
in

)

λ
(k)
n0 3

(k).

From (27), express the average effective field strength in

the sample through the average field strength in it

〈Eeff〉 =

〈

( n
∑

i=1

f iλin

)

λn03

〉−1

〈E〉. (28)

Using (23), (24), (26), (28), let us express the average

field strengths in the layers of the shell and in the core of k-
th inclusion through the average field strength in the sample

〈E〉
(k)
j = λ

(k)
jn λ

(k)
n0 3

(k)

〈

( n
∑

i=1

f iλin

)

λn03

〉−1

〈E〉,

j = 1, n, k = 1, N.

For the average value of the electric induction in the kth
inclusion, we have

〈D〉(k) =

n
∑

i=1

f (k)
i ε

(k)
i 〈E〉

(k)
i =

( n
∑

i=1

f (k)
i ε

(k)
i λ

(k)
in

)

λ
(k)
n0 3

(k)

×

〈

( n
∑

i=1

f iλin

)

λn03

〉−1

〈E〉, k = 1, N. (29)

Using (29), let’s calculate the average induction in

the sample

〈D〉 =

N
∑

k=1

V (k)

V
〈D〉(k) =

〈

( n
∑

i=1

f iεiλin

)

λn03

〉

×

〈

( n
∑

i=1

f iλin

)

λn03

〉−1

〈E〉, (30)

where
〈

( n
∑

i=1

f iεiλin

)

λn03

〉

=
1

V

N
∑

k=1

V (k)

( n
∑

i=1

f (k)
i ε

(k)
i λ

(k)
in

)

× λ
(k)
n0 3

(k).

From (2) and (30) the expression for the effective dielec-

tric characteristic tensor of a given sample of heterogeneous

material follows

ε∗ =

〈

( n
∑

i=1

f iεiλin

)

λn03

〉〈

( n
∑

i=1

f iλin

)

λn03

〉−1

.

(31)
The formula (31) is exact, but the practical calculation ε∗

of it requires knowledge of the operators λin (i = 1, n)
and 3 for each of the sample inclusions, which is a

gigantic complexity due to the huge number of inclusions
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and their mutual influence on each other. The statistical

homogeneity of the material and the smallness of each

inclusion compared to the entire material sample justify the

representation of the 3 operator as

3 = I + δ3,

where δ3 — the fluctuation additive resulting from the

irregular distribution of inclusions over the sample volume,

their differences in size, shape, material characteristics, and

orientation of crystallographic axes. In turn, the operators

λin can be represented as

λin = λ0
in + δλin, i = 1, n,

where λ0
in — tensor relating the average field strengths in

the shell layers and the core of an inclusion identical to

the given one but in solitude in the comparison medium

with a uniform applied field; δλin — correction due to the

influence of other inclusions.

As a first simplifying assumption, let us assume that

3 ≈ I,

i. e. we will neglect the fluctuation of the effective field.

In this case, for the tensor ε∗ we obtain the expression

ε∗ =

〈

( n
∑

i=1

f iεiλin

)

λn0

〉〈

( n
∑

i=1

f iλin

)

λn0

〉−1

, (32)

which can be called a generalized effective-field approxima-

tion for ε∗ medium consisting of inclusions with multilayer

shells.

As a second simplifying assumption, we may assume that

the average field strengths in the shell and core of each

inclusion are related in the same way as those of a single

inclusion with the same parameters, placed in an infinite

comparison medium with a uniform applied field, i. e.

λin ≈ λ0
in, i = 1, n. (33)

Note that the tensor components g
(k)
1 included in expres-

sion (25) to calculate λ
(k)
n0 (k = 1, N) in the coordinate

system associated with the axes of kth inclusion can be

calculated by the formula [20]:

g(k)
i j = −

1

4π

π
∫

0

2π
∫

0

nin j

nsε
c
s lnl

sinϑdϑdϕ, (34)

where εc
s l, s, l = 1, 2, 3 — components of the tensor

εc in this coordinate system; n1 = (a (k)
1 )−1 cosϕ sinϑ ,

n2 = (a (k)
2 )−1 sinϕ sinϑ , n3 = (a (k)

3 )−1 cos ϑ — the compo-

nents of the normal (non unit) to the ellipsoid surface which

is the boundary of kth inclusion; a (k)
1 , a (k)

2 , a (k)
3 — its half-

axes.

Averaging in (32) is performed over all inclusions in

the sample. If all inclusions in a sample — are of the

same type in terms of their material characteristics and

differ only in their shapes and orientations in space, then

the angular brackets in (32) should be interpreted as an

averaging of the corresponding tensor quantities associated

with the inclusions over the shapes and orientations of the

inclusions, taking their probability distributions into account.

It should be noted that the approximate value for ε∗

obtained with expression (32) depends on the comparison

medium parameter — tensor εc of its permittivity, and

in case of heterogeneous matrix medium also on a vector

parameter, characterizing the shape and orientation of grains

composing the matrix. By varying the values of these

parameters, we can obtain different types of approximations

for the tensor ε∗, and their specific values should be chosen

based on the features of the structure of the heterogeneous

medium. For example, for a matrix medium with a volume

fraction of inclusions not exceeding 0.4, it is reasonable

to choose the matrix as the comparison medium, for a

heterogeneous medium such as a statistical mixture the

medium itself with effective permittivity, i.e. use the idea of

self-consistency [20].

As for the choice of the shape of the matrix particles, for

a macroscopically isotropic heterogeneous medium of the

matrix type, it seems to be necessary to consider their shape

as spherical. In the case of anisotropic media, the choice of

matrix particle shape requires separate consideration and is

not discussed in this paper. It should be noted, however, that

accepting the matrix as a comparison medium automatically

removes the question of choosing the form of its particles

due to the structure of the obtained expression (25) for the

tensor λ
(k)
n0 , which fully agrees with the physical sense of

this situation, when the particles of matrix
”
merges“ with

comparison medium.

3. Some particular applications of the
generalized effective-field
approximation

3.1. Heterogeneous medium consisting

of homogeneous inclusions

Let us first consider some of the limiting cases when the

heterogeneous medium consists of homogeneous inclusions.

3.1.1. The core is present, but all layers of the

shell are absent

Let’s assume that all inclusions have a core, but all shell

layers are missing, i.e. f (k)
n = 1, f (k)

i = 0, i = 1, n−1. Then

by formula (25), given that λ(k)
nn = I, we have

λ
(k)
n0 =

(

I− g
(k)
1 (ε(k)

n − εc)
)−1

, k = 1, N,

and since the core occupies the entire volume of the

inclusion, g
(k)
1 = g

(k)
n = g(k) — the tensor associated with
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this kth inclusion and used in the generalized singular

approximation [20], and (32) takes form

ε∗ =
〈

εn
[

I− g(εn − εc)
]−1〉〈[

I− g(εn − εc)
]−1〉−1

,

coinciding with the formula for ε∗ in the generalized

singular approximation [20].

3.1.2. All inclusions have no core and no shell

layers, except for one layer

Suppose, for example, that for kth inclusion there is

only jk th layer, i.e. f (k)
jk

= 1, f (k)
i = 0, i 6= jk . In this case

V (k) = Ṽ (k)
jk
, g

(k)
1 = g

(k)
jk

= g(k),

λ
(k)
n0 =

[(

I− g(k)(ε
(k)
jk

− εc)
)

λ
(k)
jk n

]−1

= (λ
(k)
jk n)

−1
(

I− g(k)(ε
(k)
jk

− εc)
)−1

,

and for the tensor ε∗ we have

ε∗ =
〈

ε
(k)
jk
λ

(k)
jk n(λ

(k)
jk n)

−1
(

I− g(k)(ε
(k)
jk

− εc)
)−1

〉

×
〈

λ
(k)
jk n(λ

(k)
jk n)

−1
(

I− g(k)(ε
(k)
jk

− εc)
)−1

〉−1

=
〈

ε
(

I− g(ε − εc)
)−1

〉〈

(

I− g(ε − εc)
)−1

〉−1

, (35)

where

〈

ε
(

I−g(ε−εc)
)−1

〉

=
1

V

N
∑

k=1

V (k)ε
(k)
jk

(

I−g(k)(ε
(k)
jk
−εc)

)−1
,

〈

(

I−g(ε−εc)
)−1

〉

=
1

V

N
∑

k=1

V (k)
(

I−g(k)(ε
(k)
jk
−εc)

)−1
.

Expression (35) also coincides with the formula for ε∗ in

the generalized singular approximation.

3.1.3. For each particular inclusion, the material

characteristics of all shell layers and of core are

the same

Let us consider the case, when for each particular

inclusion, the material characteristics of all layers of the

shell and the core are the same, i.e. ε
(k)
1 = ε

(k)
2 = . . . =

= ε
(k)
n = ε(k). Then g

(k)
1 = g(k)

λ
(k)
n0 =

[ n
∑

i=1

f (k)
i λ

(k)
in

]−1
(

I− g(k)(ε(k) − εc)
)−1

,

for ε∗, we also end up with an expression in the generalized

singular approximation:

ε∗ =

〈

ε(k)

( n
∑

i=1

f (k)
i λ

(k)
in

)[ n
∑

i=1

f (k)
i λ

(k)
in

]−1

×
(

I− g(k)(ε(k) − εc)
)−1

〉

×

〈

( n
∑

i=1

f (k)
i λ

(k)
in

)[ n
∑

i=1

f (k)
i λ

(k)
in

]−1

×
(

I− g(k)(ε(k) − εc)
)−1

〉−1

=
〈

ε
(

I− g(ε − εc)
)−1〉〈(

I− g(ε − εc)
)−1〉−1

.

Thus, in the limiting cases of homogeneous inclusions,

expression (32) coincides with the expression for ε∗ in the

generalized singular approximation [20]. Note, that in all the

considered limiting cases, no simplifying assumptions were

made about the type of operators λin, i = 1, n.

3.2. Composite consisting of isotropic matrix and
of identical inclusions with isotropic
spherical core and shell with isotropic
spherical layers

Let’s assume that εm — permittivity of the matrix, εi ,

i = 1, n — permittivity of the shell layers, including the

core, of each inclusion; a1 > a2 > . . . > an — radii of

spheres which are the boundaries of shell and core. Let’s

assume that f — the total volume fraction of all inclusions

in the medium. Let’s take the comparison medium as

isotropic: εc = εcI. By direct calculation according to

formula (34) we obtain that

g
(k)
1 = −(3εc)−1I, k = 1, N. (36)

Tensor operators λin, i = 1, n, will be taken in approxi-

mation (33), to find the tensor λ0
in form, we calculate the

average electric field strength in all layers of the shell of an

isolated inclusion in an infinite comparison medium with a

uniform applied field E0.

Let’s assume that k — orth in the direction of E0, then

the field potential in ith layer of the shell will have the

form [24]:

ϕi(r) = Ai(k · r) + B i
(k · r)

r3
, i = 1, n − 1, (37)

where Ai, B i — constants, which are calculated using

boundary conditions. The field in the inclusion core is

uniform, its potential

ϕn(r) = An(k · r), An = const. (38)
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For the average field strength in the ith layer of an

insulated inclusion shell, by definition, we have (Vi —
volume occupied by the ith layer of the inclusion shell):

〈Ei〉 = (Vi)
−1

y

Vi

Ei dV = (Vi)
−1

y

Vi

(−∇ϕi)dV. (39)

Let us change in (39) from the volume integral to the

integral over the total surface of the ith layer of the shell

using the gradient theorem [25]:

〈Ei〉 = (Vi)
−1

[

−
{

Si

ϕinidS +
{

Si+1

ϕini+1dS

]

, (40)

where Si , Si+1 — spheres that are the outer and inner

boundaries of the ith layer of the shell, respectively, ni

and ni+1 — the outer unit normals to them. Given (37)
and the fact that on the sphere n = r/r , for the first of the

integrals in (40), we have the expression

{

Si

ϕini dS =
{

Si

(

Ai + B i
1

r3

)

(k · r)

r
rdS. (41)

Parameterize Si with spherical angles θ, ψ (θ — the angle

between vectors k and r):

r
∣

∣

Si
=





a i sin θ cosψ

a i sin θ sinψ

a i cos θ



 , 0 ≤ θ ≤ π, 0 ≤ ψ < 2π, r
∣

∣

Si
=a i,

then
(k · r)

r
= cos θ, dS = a2

i sin θdθdψ.

Let us substitute these expressions in (41):

{

Si

ϕinidS =

π
∫

0

dθ

2π
∫

0

dψ

(

Ai + B i
1

a3
i

)

a3
i





sin θ cosψ

sin θ sinψ

cos θ





× sin θ cos θ.

Obviously, the first two components of the integral are

zero, and for the third we have (axis z is directed along k):
({

Si

ϕini dS

)

z

=
4π

3
(Ai a

3
i + B i).

Similarly, for the second integral in (40), the first two

components are also zero, and for the third, we obtain
( {

Si+1

ϕini+1dS

)

z

=
4π

3
(Ai a

3
i+1 + B i).

With account of the fact that

Vi =
4π

3
(a3

i − a3
i+1),

as a result, for the average electric field strength in the ith
layer of the shell, we have the following value:

〈Ei〉 = −Aik, i = 1, n − 1. (42)

From (38), the expression for the average electric field

strength in the core follows evidently

〈En〉 = −Ank. (43)

From (42), (43), we have an expression for the tensors

λ0
in:

λ0
in =

Ai

An
I, i = 1, n. (44)

Substituting (36) and (44) into (25), we find

λn0 =
3εc An

n
∑

i=1

f i(2εc + εi)Ai

I. (45)

The particles of the matrix will be considered spherical

without a shell, for them

f (m)
i = 0, i = 1, n − 1; f (m)

n = 1; λ
(m)
n0 =

3εc

(2εc + εm)
I.

(46)

Taking into account the composition of the medium in

question, the averaging in (32) is reduced to the arithmetic

mean with weights equal to the volume fractions of the

medium components:

ε∗ =

[

(1− f )εmλ
(m)
n0 + f

( n
∑

i=1

f iεiλ
0
in

)

λn0

]

×

[

(1− f )λ
(m)
n0 + f

( n
∑

i=1

f iλ
0
in

)

λn0

]−1

. (47)

Obviously, in this case, the effective permittivity of an het-

erogeneous medium will be a scalar quantity, the expression

for which is obtained after substituting (44)−(46) into (47)
and elementary algebraic transformations:

ε∗ = εm

n
∑

i=1

f i [(1− f )2εcεm + f (2εc + εm)εi ]Ai

n
∑

i=1

f i [(1− f )(2εc + εi) + f (2εc + εm)εi ]Ai

.

(48)
If we take a matrix as the comparison medium, i.e.

εc = εm, then (48) will take shape

ε∗ = εm

n
∑

i=1

f i [2εm(1− f ) + εi (1 + 2 f )]Ai

n
∑

i=1

f i [εm(2 + f ) + εi (1− f )]Ai

. (49)

In the case of balls without a shell (n = 1, f 1 = 1), the
classical Maxwell−Garnett formula is obtained from for-

mula (49):

ε∗ = εm
2εm + ε1 + 2 f (ε1 − εm)

2εm + ε1 − f (ε1 − εm)
.
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3.3. Composite consisting of isotropic matrix and
identical inclusions with anisotropic
ellipsoidal core and multilayer shell with
anisotropic ellipsoidal layers

Let’s assume that εm — permittivity of the matrix, εi ,

i = 1, n, the permittivity tensors of the shell layers, includ-

ing the core, of each inclusion; a i,1, a i,2, a i,3, i = 1, n —

the half-axes of the surfaces ellipsoids S(k)
i , which are the

boundaries of the shell layers and the core of k-th inclusion.

Let’s assume that f — the total volume fraction of all

inclusions in the medium. All inclusions will be considered

equally oriented in space.

We will assume that the sizes and orientations of the

geometric axes of the surfaces-ellipsoids S(k)
i , i = 1, n, are

coordinated with the tensors εi , i = 1, n, in a certain way.

In particularly, for the ith shell layer, the images of its inner

S(k)
i+1 and outer S(k)

i boundaries are confocal ellipsoids under

the linear transformation Ti , which eliminates the anisotropy

of its dielectric properties. The initial Cartesian coordinate

system in which the geometric parameters of the inclusions

are given, denote as x1x2x3. The coordinate transformation

associated with the transformation Ti has the form

r = Tir
′
i ,

where r = (x1x2x3)T , r′i = (x1′

i x2′

i x3′

i )T — vector-columns

of coordinates of the current point in the original x1x2x3 and

new x1′

i x2′

i x3′

i coordinate systems; Ti — matrix of this trans-

formation. We denote the ellipsoid surface images S(k)
i and

S(k)
i+1 under the transformation Ti as S′(k)

i and S′(k)
i+1; denote

their half-axes as a i,1′, a i,2′, a i,3′ and a i+1,1′, a i+1,2′, a i+1,3′ .

The matrix Ti of this transformation is related to the per-

mittivity tensor εi of the ith shell layer by the relation [26]:

εi = TiT
T
i . (50)

Condition (50) ambiguously determines the transforma-

tion Ti (with accuracy to an arbitrary rotation around the

origin), so in addition to (50), we will assume that the

axes of the system x1′

i x2′

i x3′

i are directed along the axes of

ellipsoids S′(k)
i , S′(k)

i+1. The confocality of S′(k)
i and S′(k)

i+1 means

that there exists a parameter t′i > 0, that

t′i = a2
i,i′ − a2

i+1,i′, i ′ = 1′, 2′, 3′.

Let’s take the comparison medium as isotropic: εc = εcI.

Tensor operators λin, i = 1, n, will be taken in approxima-

tion (33), to find the tensor species λ0
in, we calculate the

average electric field strength in all layers of the shell of an

isolated inclusion in an infinite comparison medium with a

uniform applied field E0.

Consider the ith layer of the kth inclusion, which we will

consider isolated in an infinite comparison environment. The

electric field potential in it has the form (the upper index de-

noting the inclusion number is omitted everywhere, because

the dependence will be the same for all inclusions) [26]

ϕi =
(

(β i + N′
i,0(ξ

′
i )αi)E0, r

)

, r ∈ Vi , 0 ≤ ξ ′i ≤ t′i ,

where αi , β i — constant tensors of rank 2; N′
i,0(ξ

′
i ) —

tensor function, in coordinate system x1x2x3 calculated by

the formula

N′
i,0(ξ

′
i ) = (T−1

i )TN′
i(ξ

′
i )T

−1
i , (51)

N′
i(ξ

′
i ) — the same tensor function in the coordinate

system x1′

i x2′

i x3′

i , which has a diagonal form with principal

components:

N′
i,i′(ξ

′
i ) =

a i+1,1′a i+1,2′a i+1,3′

2

+∞
∫

ξ ′i

du

[u + a2
i+1,i′]R̃u

,

i ′ = 1′, 2′, 3′; 0 ≤ ξ ′i ≤ t′i ;

R̃u =
[

(u + a2
i+1,1′)(u + a2

i+1,2′)(u + a2
i+1,3′)

]1/2
.

Notice, that

N′
i,0(0) = L

′(ext)
i+1,0, N′

i,0(t
′
i ) = ṽ i+1L

′(int)
i,0 ,

where ṽ i+1 — the relative volume fraction of the vol-

ume inside the surface S(k)
i+1 in the volume inside the

surface S(k)
i , i. e.

ṽ i+1 =
a i+1,1a i+1,2a i+1,3

a i,1a i,2a i,3
,

L
′(int)
i,0 — tensor of generalized geometric factors of the

ellipsoid S(k)
i considering the anisotropy of dielectric prop-

erties in the nearest shell layer inside S(k)
i in coordinate

system x1x2x3; L
′(ext)
i+1,0 — tensor of generalized geometric

factors of the ellipsoid S(k)
i+1 considering the anisotropy of

dielectric properties in the nearest shell layer outside S(k)
i+1

in the x1x2x3 coordinate system [26]. Similarly (51), there
is a relation of these tensors to the same tensors in the

coordinate system x1′

i x2′

i x3′

i :

L
′(int)
i,0 = (T−1

i )TL
′(int)
i T−1

i , L
′(ext)
i+1,0 = (T−1

i )TL
′(ext)
i+1 T−1

i .

Using a procedure similar to the calculation of the average

field strength in a one-layer [27] shell, we obtain the

following expression for the average field strength in the ith
layer of the shell:

〈Ei〉 =

[

−βi +
ṽ i+1

1− ṽ i+1

(

L
′(ext)
i+1,0 − L

′(int)
i,0

)

αi

]

E0. (52)

The field inside the core is uniform, its intensity can be

written as En = −βnE0, where βn — a constant rank 2

tensor, so the average field strength in the core

〈En〉 = −βnE0. (53)

From (52), (53) the form of tensors λ0
in follows:

λ0
in =

[

β i −
ṽ i+1

1− ṽ i+1

(

L
′(ext)
i+1,0 − L

′(int)
i,0

)

αi

]

β−1
n , i = 1, n,

(54)
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and one should naturally assume that ṽn+1 = 0. Substitut-

ing (54) into (25), we obtain

λn0 = βn

[ n
∑

i=1

(

I− g1(εi − εc)
)

×
[

f iβi − v ′i+1

(

L
′(ext)
i+1,0 − L

′(int)
i,0

)

αi

]

]−1

, (55)

where v ′i+1 — volume fraction of the volume inside the

surface S(k)
i+1 to the volume of the whole inclusion, i. e.

v ′i+1 =
a i+1,1a i+1,2a i+1,3

a1,1a1,2a1,3

, i = 0, n − 1; v ′n+1 = 0.

Here, it has been taken into account that

f i =
a i,1a i,2a i,3 − a i+1,1a i+1,2a i+1,3

a1,1a1,2a1,3

= (1− ṽ i+1)v
′
i ,

i = 1, n.

As in the considered example 3.2, the matrix can be

considered to consist of spherical particles without a shell,

for them (see (46))

f (m)
i = 0, i = 1, n − 1; f (m)

n = 1; λ
(m)
n0 =

3εc

(2εc + εm)
I.

Taking into account the identity of all inclusions and

their identical orientation in space, the averaging in (32)
is reduced to the calculation of the arithmetic mean with

weights equal to the volume fractions of the components,

i.e. to calculate ε∗ we use a formula similar to (47) and

substituting (46) in it we obtain

ε∗ =

[

(1− f )εm
3εc

(2εc + εm)
I + f

( n
∑

i=1

f iεiλ
0
in

)

λn0

]

×

[

(1− f )
3εc

(2εc + εm)
I + f

( n
∑

i=1

f iλ
0
in

)

λn0

]−1

,

where λ0
in, i = 1, n, and λn0 are calculated by formu-

las (54), (55) respectively.

Conclusion

The main results of this work are the generalized

effective-field approximation proposed therein for calculat-

ing the effective characteristics of an heterogeneous medium

consisting of inclusions with a multilayer shell, as well as

the expression (32) for the effective permittivity tensor of

such a medium obtained with its help. This approximation

has a high degree of generality and can be applied to

multicomponent media and allows taking into account the

texture and probabilistic distribution of inclusion shapes.

It is shown that in the limiting cases of media with

homogeneous inclusions, the approximation proposed in this

paper gives the same results as the generalized singular

approximation [20].
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