Reflectometric temperature measurement using a single-mode-multimode-single-mode" fiber optic structure
Igumenov A. Yu.1,2, Melnikov I. V. 1,3, Afanasiev A. A.1, Popova S. S.1, Lukinykh S. N.2,4, Tambasov I. A.5,6
1Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
2T8 LLC, Moscow, Russia
3Sadovsky Institute of Geosphere Dynamics of Russian Academy of Sciences. Moscow, Russia
4Lomonosov Moscow State University, Moscow, Russia
5Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
6LLC "Scientific and production company "Spetstechnauka", Krasnoyarsk, Russia
Email: igumenov.au@mipt.ru

PDF
It is shown the "single-mode-multimode-single-mode" structure allows carrying out remote temperature measurement with optical time domain reflectometer. A multimode fiber length was 10 mm. We used the temperature range from 30 to 70oC and wavelengths of 1310 and 1550 nm. The total length of a single-mode fiber-optic line for reflectometric measurements was 20 km. Keywords: fiber optics, fiber optic sensors, optical fiber reflectometry, multimode interference.
  1. H.F. Talbot, Lond. Edinb. Dubl. Phil. Mag. J. Sci., Ser. 3, 9, 401 (1836). DOI: 10.1080/14786443608649032
  2. Lord Rayleigh, Lond. Edinb. Dubl. Phil. Mag. J. Sci., Ser. 5, 11, 196 (1881). DOI: 10.1080/14786448108626995
  3. J.T. Winthrop, C.R. Worthington, J. Opt. Soc. Am., 55, 373 (1965). DOI: 10.1364/JOSA.55.000373
  4. W.D. Montgomery, J. Opt. Soc. Am., 57, 772 (1967). DOI: 10.1364/JOSA.57.000772
  5. M.V. Berry, S. Klein, J. Mod. Opt., 43, 2139 (1996). DOI: 10.1080/09500349608232876
  6. T. Saastamoinen, J. Tervo, P. Vahimaa, J. Turunen, J. Opt. Soc. Am. A, 21, 1424 (2004). DOI: 10.1364/JOSAA.21.001424
  7. L.B. Soldano, E.C.M. Pennings, J. Lightwave Technol., 13, 615 (1995). DOI: 10.1109/50.372474
  8. K. Okamoto, Fundamentals of optical waveguides (Academic Press, London, 2006)
  9. W.S. Mohammed, A. Mehta, E.G. Johnson, J. Lightwave Technol., 22, 469 (2004). DOI: 10.1109/JLT.2004.824379
  10. W.S. Mohammed, P.W.E. Smith, X. Gu, Opt. Lett., 31, 2547 (2006). DOI: 10.1364/OL.31.002547
  11. K. Krupa, A. Tonello, B. Shalaby, A. Barthelemy, G. Millot, S. Wabnitz, V. Couderc, Nature Photon., 11, 237 (2017). DOI: 10.1038/nphoton.2017.32
  12. A.V. Kir'yanov, S.M. Klimentov, I.V. Mel'nikov, A.V. Shestakov, Opt. Commun., 282, 4759 (2009). DOI: 10.1016/j.optcom.2009.08.062
  13. A.A. Machnev, P.B. Novozhylov, A.A. Poimanov, I.V. Mel'nikov, Opt. Mater. Express, 3, 1608 (2013). DOI: 10.1364/OME.3.001608
  14. N.S. Balakleyskiy, A.A. Machnev, I.V. Mel'nikov, in Nonlinear optics, OSA Technical Digest (online) (Optica Publ. Group, 2017), paper NTu3A.6. DOI: 10.1364/NLO.2017.NTu3A.6
  15. D.A. May-Arrioja, J.E. Antonio-Lopez, J.J. Sanchez-Mondragon, P. LiKamWa, in Advanced lasers, ed. by O. Shulika, I. Sukhoivanov (Springer, Cham, 2015), p. 19. DOI: 10.1007/978-94-017-9481-7_2
  16. J.R. Guzman-Sepulveda, R. Guzman-Cabrera, A.A. Castillo-Guzman, Sensors, 21, 1862 (2021). DOI: 10.3390/s21051862
  17. K. Harris, D. White, D. Melanson, C. Samson, T.M. Daley, Int. J. Greenhouse Gas Control, 50, 248 (2016). DOI: 10.1016/j.ijggc.2016.04.016
  18. S. Wang, X. Fan, Q. Liu, Z. He, Opt. Express, 23, 33301 (2015). DOI: 10.1364/OE.23.033301
  19. Q. Jiang, Y.-Sh. Kang, Optoelectron. Lett., 6, 306 (2010). DOI: 10.1007/s11801-010-0011-x
  20. H. Kang, D. Kim, M. Song, Proc. SPIE, 8439, 84392C (2012). DOI: 10.1117/12.923271

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru