Circumferential magnetoelectric effect in cylindrical piezoelectric-magnetostrictive composites with transverse bias magnetic field
Wu G. J.1, Zhang R.1
1Department of Physics, Nanjing Tech University, Nanjing, China
Email: wugaojian@njtech.edu.cn, zhangruwl@njtech.edu.cn
Strong circumferential magnetoelectric (ME) effect has been observed in cylindrical PZT/Terfenol-D composite with transverse bias magnetic field. With dc bias magnetic field along axial direction and ac magnetic field along circumferential direction, strong ME voltage is obtained as 0.93 V·cm-1·Oe-1 at off-resonance frequency 1 kHz and as high as 32 V·cm-1·Oe-1 at resonance frequency f_r=46.0 kHz, which is much higher than that observed in planar ring-type ME laminate. The enhanced circumferential ME effect is attributed to improved interface mechanical coupling via normal stress. At room temperature, induced voltage from this cylindrical ME composite exhibits a near-linear response to applied ac vortex magnetic field amplitude over a wide magnetic field range of 10-8<Hac<10-5 T both at low frequency and resonance frequency. Moreover, induced voltage has an excellent flat response to applied ac magnetic field frequency between Hz and kHz. The strong and stable circumferential ME effect in cylindrical ME laminate offers potential in vortex magnetic field sensor applications. Key words: ME effect, piezoelectric, frequency response, magnetic sensor.
- W. Eerenstein, M. Wioral, J.L. Prieto, J.F. Scott, N.D. Mathur, Nature Mater., 6, 348 (2007). DOI: 10.1038/nmat1886
- C.W. Nan, M.I. Bichurin, S.X. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys., 103, 031101 (2008). DOI: 10.1063/1.2836410
- G. Busatto, R.L. Capruccia, F. Iannuzzo, F. Velardi, R. Roncella, Microelectron. Reliab., 3, 577 (2003). DOI: 10.1016/S0026-2714(03)00024-6
- S.X. Dong, J.F. Li, D. Viehland, Appl. Phys. Lett., 85, 2307 (2004). DOI: 10.1063/1.1791732
- J. Zhang, B. Ge, Q. Zhang, D.A. Filippov, J. Wu, J. Tao, Z. Jia, L. Jiang, L. Cao, G. Srinivasan, Appl. Phys. Lett., 118, 042402 (2021). DOI: 10.1063/5.0038722
- D.V. Savelev, L.Y. Fetisov, D.V. Chashin, Y.K. Fetisov, IEEE Sens. Lett. 5, 7003304 (2021). DOI: 10.1109/LSENS.2021.3119206
- G.J. Wu, R. Zhang, Sensors Actuators A, 330, 112845 (2021). DOI: 10.1016/j.sna.2021.112845
- G. Sreenivasulu, S.K. Mandal, S. Bandekar, V.M. Petrov, G. Srinivasan, Phys. Rev. B, 84, 144426 (2011). DOI: 10.1103/PhysRevB.84.144426
- V. Loyau, V. Morin, G. Chaplier, M. LoBue, F. Mazaleyrat, J. Appl. Phys., 117, 184102 (2015). DOI: 10.1063/1.4919722
- D.A. Burdin, D.V. Chashin, N.A. Ekonomov, S.N. Gordeev, Y.K. Fetisov, Appl. Phys. Lett., 116, 072901 (2020). DOI: 10.1063/1.5136088
- L.X. Bian, Y.M. Wen, P. Li, Y.F. Zhang, Q.L. Gao, IEEE Trans. Magn., 45, 2613 (2009). DOI: 10.1109/TMAG.2009.2018916
- Z. Chen, Y. Su, S.A. Meguid, J. Appl. Phys., 116, 173910 (2014). DOI: 10.1063/1.4901069
- H. Yao, Y. Shi, Y.W. Gao, J. Appl. Phys., 118, 234104 (2015). DOI: 10.1063/1.4938113
- S. Chikazumi, Physics of ferromagnetism, 2nd ed. (Oxford University Press, Oxford, 1997)
- D.A. Pan, Y. Bai, A.A. Volinsky, W.Y. Chu, L.J. Qiao, Appl. Phys. Lett., 92, 052904 (2008). DOI: 10.1063/1.2841709
- W. Wu, K. Bi, Y.G. Wang, J. Mater. Sci., 46, 1602 (2011). DOI: 10.1007/s10853-010-4971-9
- J. Zhang, K. Li, D. Chen, D.A. Filippov, Q. Zhang, S. Li, X. Peng, J. Wu, R. Timilsina, L. Cao, G. Srinivasan, J. Electron. Mater., 49, 1120 (2020). DOI: 10.1007/s11664-019-07713-6
- M.I. Bichurin, D.A. Filippov, V.M. Petrov, V.M. Laletsin, N. Paddubnaya, G. Srinivasan, Phys. Rev. B, 68, 132408 (2003). DOI: 10.1103/PhysRevB.68.132408
- Y.M. Jia, S.W. Or, J. Wang, H.L.W. Chan, X.Y. Zhao, H.S. Luo, J. Appl. Phys., 101, 104103 (2007). DOI: 10.1063/1.2732420
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.