Ion-beam Modification of the Local Luminescent Properties of Hexagonal Boron Nitride
Petrov Yu.V.
1, Gogina O.A.
1, Vyvenko O.F.
1, Kovalchuk S.
2, Bolotin K.
2, Watanabe K.
3, Taniguchi T.
31St. Petersburg State University, St. Petersburg, Russia
2Free University of Berlin, Berlin, Germany
3National Institute for Materials Science, 30 Tsukuba, Ibaraki, Japan
Email: y.petrov@spbu.ru
Hexagonal boron nitride is a promising material of modern optoelectronics. Point defects in this material can serve as single-photon sources. In this paper we investigate the modification of the luminescent properties of hexagonal boron nitride by means of local irradiation with focused gallium and helium ion beams. It is demonstrated that the intensity of band-to-band cathodoluminescence monotonically decreases with increasing ion fluence for both gallium and helium. The luminescence band of about 2 eV may become more intense after exposure to He ions with certain ion fluence. The effect of complete quenching of luminescence after gallium irradiation is used to estimate the diffusion length of excess charge carriers. Keywords: point defects, cathodoluminescence, scanning helium ion microscope, excess charge carriers.
- I. Aharonovich, D. Englund, M. Toth. Nature Photonics, 10, 631 (2016). DOI: 10.1038/NPHOTON.2016.186
- N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki. Nature Photonics, 6, (2012). DOI: 10.1038/NPHOTON.2012.75
- A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T.J. Karle, A. Gali, S. Prawer, J.C. McCallum, B.C. Johnson. Nature Comm., 6, 7783 (2015). DOI: 10.1038/ncomms8783
- S. Castelletto, B.C. Johnson, V. Ivady, N. Stavrias, T. Umeda, A. Gali, T. Ohshima. Nature Mater., 13, 151 (2014). DOI: 10.1038/NMAT3806
- R. Bourrellier, S. Meuret, A. Tararan, O. Stephan, M. Kociak, L.H.G. Tizei, A. Zobelli. Nano Lett., 16, 4317 (2016). DOI: 10.1021/acs.nanolett.6b01368
- G. Cassabois, P. Valvin, B. Gil. Nature Photonics, 10, 262 (2016). DOI: 10.1038/nphoton.2015.277
- S. Choi, T.T. Tran, C. Elbadawi, C. Lobo, X. Wang, S. Juodkazis, G. Seniutinas, M. Toth, I. Aharonovich. ACS Appl. Mater. Interfaces, 8, 29642 (2016). DOI: 10.1021/acsami.6b09875
- Yu.V. Petrov, O.F. Vyvenko, O.A. Gogina, K. Bolotin, S. Kovalchuk, K. Watanabe, T. Taniguchi. J. Phys.: Conf. Series, 2103 (1), 012065 (2021). DOI: 10.1088/1742-6596/2103/1/012065
- J.D. Caldwell, I. Aharonovich, G. Cassabois, J.H. Edgar, B. Gil, D.N. Basov. Nature Rev., 4, 552. DOI: 10.1038/s41578-019-0124-1
- K. Watanabe, T. Taniguchi, H. Kanda. Nature Mater., 3, 404 (2004). DOI: 10.1038/nmat1134
- T. Korona, M. Chojecki. Int. J. Quantum Chem., 119 (14), e25925 (2019). DOI: 10.1002/qua.25925
- L. Weston, D. Wickramaratne, M. Mackoit, A. Alkauskas, C.G. Van de Walle. Phys. Rev. B, 97 (21), 214104 (2018). DOI: 10.1103/PhysRevB.97.214104
- T.B. Ngwenya, A.M. Ukpong, N. Chetty. Phys. Rev. B, 84, 245425 (2011). DOI: 10.1103/PhysRevB.84.245425
- J.F. Ziegler, M.D. Ziegler, J.P. Biersack. Nucl. Instr. Meth. Phys. Res. B, 268, 1818 (2010). DOI: 10.1016/j.nimb.2010.02.091
- D. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, R. Gauvin. J. Scanning Microscop., 29 (3), 92 (2007). DOI: 10.1002/sca.20000
- D.M. Hoffman, G.L. Doll, P.C. Eklund. Phys. Rev. B, 30 (10), 6051 (1984). DOI: 10.1103/PhysRevB.30.6051
- M.R. Uddin, S. Majety, J. Li, J.Y. Lin, H.X. Jiang. J. Appl. Phys., 115, 093509 (2014). DOI: 10.1063/1.4867641
- V.L. Bonch-Bruevich, S.G. Kalashnikov, Fizika poluprovodnikov (Nauka, M., 1977) (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.