Sensitization of ZnO nanorods by AgInS2 colloidal quantum dots for adsorption gas sensors with light activation
Ryabko A.A. 1,2, Nalimova S.S. 1, Mazing D.S 1, Korepanov O. A. 1, Guketlov A.M.3, Aleksandrova О.A. 1, Maximov A. I. 1, Moshnikov V.A. 1, Shomakhov Z.V. 3, Aleshin A.N. 2
1St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3Kabardino-Balkaria State University, Nalchik, Russia
Email: a.a.ryabko93@yandex.ru, sskarpova@list.ru, aimaximov@mail.ru

PDF
A low-temperature technique for the formation of coatings based on ZnO nanorods decorated with colloidal AgInS2 quantum dots is presented. It is shown that ZnO nanocrystals and colloidal AgInS2 quantum dots with a shell of mercaptopropionic acid molecules form a heterojunction. Sensitization of ZnO nanorods with AgInS2 colloidal quantum dots to visible irradiation provides a gas analytical response of the structure to isopropyl alcohol vapor at room temperature under blue LED illumination with a peak wavelength of 460 nm. Keywords: adsorption gas sensors, photoactivation of gas sensitivity, zinc oxide nanorods, AgInS2 colloidal quantum dots, sensitization.
  1. V.A. Moshnikov, I.E. Gracheva, V.V. Kuznezov, A.I. Maximov, S.S. Karpova, A.A. Ponomareva. J. Non-Cryst. Solid., 356, 37 (2010). DOI: 10.1016/j.jnoncrysol.2010.06.030
  2. S.S. Karpova, V.A. Moshnikov, S.V. Mjakin, E.S. Kolovangina. Semiconductors, 47 (3), 392 (2013). DOI: 10.1134/S1063782613030123
  3. S.S. Karpova, V.A. Moshnikov, A.I. Maksimov, S.V. Mjakin, N.E. Kazantseva. Semiconductors, 47, 1026 (2013). DOI: 10.1134/S1063782613080095
  4. L.K. Krasteva, D.T. Dimitrov, K.I. Papazova, N.K. Nikolaev, T.V. Peshkova, N.V. Kaneva, V.A. Moshnikov, I.E. Gracheva, S.S. Karpova. Semiconductors, 47 (4), 586 (2013). 10.1134/S106378261
  5. D.T. Dimitrov, N.K. Nikolaev, K.I. Papazova, L.K. Krasteva, A.S. Bojinova, T.V. Peshkova, N.V. Kaneva, I.A. Pronin, I.A. Averin, N.D. Yakushova, A.A. Karmanov, A.T. Georgieva, V.A. Moshnikov. Appl. Surf. Sci., 392, 95 (2017). DOI: 10.1016/j.apsusc.2016.08.049
  6. S. Mahajan, S. Jagtap. Appl. Mater. Today, 18, 100483 (2020). DOI: 10.1016/j.apmt.2019.100483
  7. V.K. Tomer, R. Malik, A. Kailasam. ACS Omega, 2, 3658 (2017). DOI: 10.1021/acsomega.7b00479
  8. C. Gautam, C.S. Tiwary, L.D. Machado, S. Jose, S. Ozden, S. Biradar, D.S. Galvao, R.K. Sonker, B.C. Yadav, R. Vajtaia, P.M. Ajayan. RSC Adv., 6, 87888 (2016). DOI: 10.1039/C6RA18833H
  9. F. Qu, Y. Yuan, R. Guarecuco, M. Yang. Small, 12, 3128 (2016). DOI: 10.1002/smll.201600422
  10. F. Qu, Y. Yuan, M. Yang. Chem. Mater., 29, 969 (2017). DOI: 10.1021/acs.chemmater.6b03435
  11. L. Zhu, C. Feng, F. Li, D. Zhang, C. Li, Y. Wang, Y. Lin, S. Ruan, Z. Chen. RSC Adv., 4, 61691 (2014). DOI: 10.1039/C4RA11010B
  12. S. Hussain, T. Liu, M. Javed, N. Aslam, W. Zeng. Sens. Act. B, 239, 1243 (2017). DOI: 10.1016/j.snb.2016.09.128
  13. Q. Nie, W. Zhang, L. Wang, Z. Guo, C. Li, J. Yao, M. Li, D. Wu, L. Zhou. Sens. Act. B, 270, 140 (2018). DOI: 10.1016/j.snb.2018.04.170
  14. M. Zhang, H.C. Su, Y. Rheem, C.M. Hangarter, N.V. Myung. J. Phys. Chem. C, 116, 20067 (2012). DOI: 10.1021/jp305393c
  15. D.H. Shin, J.S. Lee, J. Jun, S.G. Kim, J. Jang. ACS Appl. Mater. Interfac., 7, 1746 (2015). DOI: 10.1021/am507314t
  16. S. Mao, G. Lub, J. Chen. J. Mater. Chem. A, 2, 5573 (2014). DOI: 10.1039/C3TA13823B
  17. T.N. Ly, S. Park. Sci. Reports, 8, 18030 (2018). DOI: 10.1038/s41598-018-36468-z
  18. Y. Guo, T. Wang, F. Chen, X. Sun, X. Li, Z. Yu, P. Wan, X. Chen. Nanoscale, 8, 12073 (2016). DOI: 10.1039/C6NR02540D
  19. H.T. Hien, H.T. Giang, N.V. Hieu, T. Trung, C.V. Tuan. Sens. Act. B, 249, 348 (2017). DOI: 10.1016/j.snb.2017.04.115
  20. G.J. Choi, R.K. Mishra, J.S. Gwag. Mater. Lett., 264, 127385 (2020). DOI: 10.1016/j.matlet.2020.127385
  21. O. Faye, U. Eduok, J.A. Szpunar, A.C. Beye. Physica E, 117, 113794 (2020). DOI: 10.1016/j.physe.2019.113794
  22. J. Wang, S. Fan, Y. Xia, C. Yang, S. Komarneni. J. Hazard. Mater., 381, 120919 (2020). DOI: 10.1016/j.jhazmat.2019.120919
  23. Y. Gui, K. Tian, J. Liu, L. Yang, H. Zhang, Y. Wang. J. Hazard. Mater., 380, 120876 (2019). DOI: 10.1016/j.jhazmat.2019.120876
  24. H. Ma, L. Yu, X. Yuan, Y. Li, C. Li, M. Yin, X. Fan. J. Alloys Compounds, 782, 1121 (2019). DOI: 10.1016/j.jallcom.2018.12.180
  25. M. Wang, Y. Zhu, D. Meng, K. Wang, C. Wang. Mater. Lett., 277, 128372 (2020). https://doi.org/10.1016/j.matlet.2020.12837
  26. A.A. Bobkov, D.S. Mazing, A.A. Ryabko, S.S. Nalimova, A.A. Semenova, A.I. Maksimov, E.A. Levkevich, V.A. Moshnikov. 2018 Proceed. IEEE Intern. Conf. Electr. Eng. Photon., EExPolytech., 219 (2018). DOI: 10.1109/EExPolytech.2018.8564407
  27. S.S. Nalimova, V.M. Kondratev, A.A. Ryabko, A.I. Maksimov, V.A. Moshnikov. J. Phys. Conf. Series, 1658, 012033 (2020). DOI: 10.1088/1742-6596/1658/1/012033
  28. Y.-T. Tsai, S.-J. Chang, L.-W. Ji, Y.-J. Hsiao, I-T. Tang, H.-Y. Lu, Y.-L. Chu. ACS Omega, 3, 13798 (2018). DOI: 10.1021/acsomega.8b01882
  29. E. Espid, F. Taghipour. Sens. Actuators B, 241, 828 (2017). DOI: 10.1016/j.snb.2016.10.129
  30. J. Jiang, L. Shi, T. Xie, D. Wang, Y. Lin. Sens. Actuators B, 254, 863 (2018). DOI: 10.1016/j.snb.2017.07.197
  31. A.A. Ryabko, S.S. Nalimova, A.I. Maximov, V.A. Moshnikov. Proceed. 2021 IEEE Conf. of Russ. Young Researchers in Electrical and Electronic Engineering, ElConRus, 1180 (2021). DOI: 10.1109/ElConRus51938.2021.9396166
  32. J. Prades, R. Jimenez-Di az, F. Hernandez-Rami rez, S. Barth, A. Cirera, A. Romano-Rodri guez, S. Mathur, J.R. Morante. Sens. Act. B, 140, 337 (2009). DOI: 10.1016/j.snb.2009.04.070
  33. J. Li, D. Gu, Y. Yang, H. Du, X. Li. Front. Mater., 6, 158 (2019). DOI: 10.3389/fmats.2019.00158
  34. A. Chizhov, M. Rumyantseva, R. Vasiliev, D. Filatov, K. Drozdov, I. Krylov, A. Abakumov, A. Gaskov. Sens. Act. B, 205, 305 (2014). DOI: 10.1016/j.snb.2014.08.091
  35. H. Li, J. Yoon, C. Lee, K. Lim, J. Yoon, J. Lee. Sens. Act. B, 255, 2963 (2018). DOI: 10.1016/j.snb.2017.09.118
  36. D. Zhang, G. Dong, Y. Cao, Y. Zhang. J. Colloid Interface Sci., 528, 184 (2018). DOI: 10.1016/j.jcis.2018.05.085
  37. R. Chen, J. Wang, Y. Xia, L. Xiang. Sens. Act. B, 255, 2538 (2017). DOI: 10.1016/j.snb.2017.09.059
  38. H. Wang, J. Bai, M. Dai, K. Liu, Y. Liu, L. Zhou, F. Liu, F. Liu, Y. Gao, X. Yan, L. Geyu. Sens. Act. B, 304, 127287 (2020). DOI: 10.1016/J.SNB.2019.127287
  39. X. Geng, J. You, J. Wang, C. Zhang. Mater. Chem. Phys., 191, 114 (2017). DOI: 10.1016/j.matchemphys.2017.01.046
  40. J. Zhou, N. Xu, Z.L. Wang. Adv. Mater., 18, 2432 (2006). DOI: 10.1002/adma.200600200
  41. S. Rackauskas, N. Barbero, C. Barolo, G. Viscardi. Nanomater., 7, 381 (2017). DOI:10.3390/nano7110381
  42. R. Castro, R. Pasco, M. Saraiva, J. Santos, D. Ribeiro. Spectrochim. Acta Part A: Molec. Biomolec. Spectroscopy, 267, 120592 (2022). DOI: 10.1016/j.saa.2021.120592
  43. P. Ganguly, S. Mathew, L. Clarizia, S. Kumar, A. Akande, S.J. Hinder, A. Breen, S.C. Pillai. ACS Omega, 5, 406 (2020). DOI: 10.1021/acsomega.9b02907
  44. X. Zheng, Y. Mao, J. Wen, X. Fu, X. Liu. Nanomater., 9, 1567 (2019). DOI: 10.3390/nano9111567
  45. A.A. Ryabko, A.I. Maximov, V.A. Moshnikov, E.I. Terukov, V.N. Verbitskii, V.S. Levitskii. Semiconductors, 54, 1496 (2020). DOI: 10.1134/S1063782620110238
  46. A. Raevskaya, V. Lesnyak, D. Haubold, V. Dzhagan, O. Stroyuk, N. Gaponik, D.R. Zahn, A. Eychmuller. J. Phys. Chem. C, 121, 9032 (2017). DOI: 10.1021/acs.jpcc.7b00849
  47. G.H. Carey, A.L. Abdelhady, Z. Ning, S.M. Thon, O.M. Bakr, E.H. Sargent. Chem. Rev., 115, 12732 (2015). DOI: 10.1021/acs.chemrev.5b00063
  48. O.A. Korepanov, D.S. Mazing, O.A. Aleksandrova, V.A. Moshnikov, A.S. Komolov, E.F. Lazneva, D.A. Kirilenko. Phys. Solid State, 61 (12), 2326 (2019). DOI: 10.1134/S1063783419120217
  49. O.A. Alexandrova, Yu.V. Balakshin, A.D. Bol'shakov, V.M. Kondratiev, O.A. Korepanov, D.S. Masing, A.I. Maksimov, E.V. Maraeva, V.A. Moshnikov, E.N. Muratova, A.V. Nazarov, S.S. Nalimova, V.A. Nikonova, N.V. Permyakov, Yu.S. Reutov, A.A. Ryabko, A.V. Startseva, A.A. Shemukhin, Nanochastitsy, nanosystemy i ikh primenenie. Formirovanie nanosystem dlya sensoriki i meditsiny (SPETU "LETI", SPb, 2021), p. 9-51 (in Russian)
  50. P.-T. Hsieh, Y.-C. Chen, K.-S. Kao, C.-M. Wan. Appl. Phys. A, 90, 317 (2008). DOI: 10.1007/s00339-007-4275-3
  51. S.S. Nalimova, A.A. Ryabko, A.I. Maximov, V. Moshnikov. J. Phys.: Conf. Ser., 1697, 012128 (2020). DOI: 10.1088/1742-6596/1697/1/012128
  52. S. Zang, Y. Wang, W. Su, H. Zhu, G. Li, X. Zhang, Y. Liu. Phys. Status Solidi RRL, 10, 745 (2016). DOI: 10.1002/pssr.201600220
  53. C.M. Chuang, P.R. Brown, V. Bulovic, M.G. Bawendi. Nat. Mater., 13, 796 (2014). DOI: 10.1038/NMAT3984
  54. S. Peng, S. Zhang, S.G. Mhaisalkar, S. Ramakrishna. Phys. Chem. Chem. Phys., 14, 8523 (2012). DOI: 10.1039/C2CP40848A
  55. Y. Yang, Y. Liu, B. Mao, B. Luo, K. Zhang, W. Wei, Z. Kang, W. Shi, S. Yuan. Catal. Lett., 149, 1800 (2019). DOI: 10.1007/s10562-019-02718-6
  56. P.-T. Hsieh, Y.-C. Chen, K.-S. Kao, C.-M. Wang. Appl. Phys. A, 90, 317 (2008). DOI: 10.1007/s00339-007-4275

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru