Velocity of plasma rotation in reflex discharge with themionic cathode
Oiler A. P.1,2, Liziakin G. D. 1, Gavrikov A.V. 1,2, Smirnov V.P.1
1 Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
2Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
Email: andrey_oiler@mail.ru

PDF
This work is devoted to determining the azimuthal ion rotation velocity in a reflex discharge with a thermionic cathode. For the experimental determination of the ion velocity, a Mach probe with directional particle collection was used. The Mach probe rotation velocity measurements are compared with the drift speed in crossed Ex B fields, where the radial electric field is measured with an emissive probe. The rotation of the plasma was found to be predominantly due to this drift, corrected for centrifugal effects. One of the important results of the work is the determination of the ion temperature. The obtained value Ti=0.12 eV, agrees with the ion temperature estimates in works with similar experimental conditions. A general parameter has been obtained that makes it possible to estimate the necessity to take into account centrifugal effects under given conditions. Keywords: plasma, thermionic cathode, reflex discharge, ion rotation, crossed fields.
  1. G. Liziakin, N. Antonov, R. Usmanov, A. Melnikov, R. Timirkhanov, N. Vorona, V.S. Smirnov, A. Oiler, S. Kislenko, A. Gavrikov, V.P. Smirnov. Plasma Phys. Controll. Fusion, 63 (3), 032002 (2021). DOI: 10.1088/1361-6587/abd25e
  2. G. Liziakin, N. Antonov, V.S. Smirnov, R. Timirkhanov, A. Oiler, R. Usmanov, A. Melnikov, N. Vorona, S. Kislenko, A. Gavrikov, V.P. Smirnov. J. Phys. D: Appl. Phys., 54, 414005 (2021). DOI: 10.1088/1361-6463/ac128e
  3. T. Ohkawa, R.L. Miller. Phys. Plasmas, 9, 5116 (2002). DOI: 10.1063/1.1523930
  4. V.P. Smirnov, A.A. Samokhin, N.A. Vorona, A.V. Gavrikov. Fizika plazmy, 39(523), 2013 (2006) (in Russian). DOI: 10.7868/s0367292113050107
  5. G. Liziakin, A. Gavrikov, V. Smirnov. Plasma Sourc. Sci. Technol., 29, 015008 (2020). DOI: 10.1088/1361-6595/ab5ad5
  6. G. Liziakin, A. Oiler, A. Gavrikov, N. Antonov, V. Smirnov. J. Plasma Phys., 87 (4), 905870414 (2021). DOI: 10.1017/s0022377821000829
  7. C.S. MacLatchy, C. Boucher, D.A. Poirier. J. Gunn. Rev. Sci. Instrum., 63, 3923 (1992). DOI: 10.1063/1.1143239
  8. K.S. Chung. Plasma Sourc. Sci. Technol., 21, 063001 (2012). DOI: 10.1088/0963-0252/21/6/063001
  9. S.A. Khrapak, B.A. Klumov, G.E. Morfill. Phys. Plasmas, 14, 074702 (2007). DOI: 10.1063/1.2749259
  10. M. Hudis, L.M. Lidsky. J. Appl. Phys., 41, 5011 (1970). DOI: 10.1063/1.1658578
  11. I.H. Hutchinson. Plasma Phys. Controll. Fusion, 44 (9), 1953 (2002). DOI: 10.1088/0741-3335/44/9/313
  12. T. Shikama, S. Kado, A. Okamoto, S. Kajita, S. Tanaka. Phys. Plasmas, 12, 1 (2005). DOI: 10.1063/1.1872895
  13. K.S. Chung, I.H. Hutchinson, B. Labombard, R.W. Conn. Phys. Fluids B, 1, 2229 (1989). DOI: 10.1063/1.859039
  14. J.P. Gunn, C. Boucher, P. Devynck, I. vDuran, K. Dyabilin, J. Horavcek, M. Hron, J. Stockel, G. van Oost, H. van Goubergen, F. vZavcek. Phys. Plasmas, 8, 1995 (2001). DOI: 10.1063/1.1344560
  15. P.C. Stangeby. The Plasma Boundary of Magnetic Fusion Devices (CRC Press, 2000)
  16. I.H. Hutchinson. Phys. Plasmas, 15, 123503 (2008)
  17. L. Oksuz, N. Hershkowitz. Plasma Sourc. Sci. Technol., 13, 263 (2004). DOI: 10.1088/0963-0252/13/2/010
  18. X. Zhang, D. Dandurand, T. Gray, M.R. Brown, V.S. Lukin. Rev. Sci. Instrum., 82, 033510 (2011). DOI: 10.1063/1.3559550
  19. Y.S. Choi, H.J. Woo, K.S. Chung, M.J. Lee, D. Zimmerman, R. McWilliams. Jpn. J. Appl. Phys., Part 1: Regular Papers and Short Notes and Review Papers, 45, 5945 (2006). DOI: 10.1143/JJAP.45.5945
  20. C. Collins, M. Clark, C.M. Cooper, K. Flanagan, I.V. Khalzov, M.D. Nornberg, B. Seidlitz, J. Wallace, C.B. Forest. Phys. Plasmas, 21, 042117 (2014). DOI: 10.1063/1.4872333
  21. [Electronic source] Available at: https://www.ni.com/docs/en-US/bundle/ni-9219-specs/page/ overview.html
  22. V. Desangles, G. Bousselin, A. Poye, N. Plihon. J. Plasma Phys., 87 (3), 905870308 (2021). DOI: 10.1017/s0022377821000544
  23. F.F. Chen. Introduction to Plasma Physics and Controlled Fusion (Springer International Publishing, Cham, 2016) DOI: 10.1007/978-3-319-22309-4
  24. S. Jin, M.J. Poulos, B. van Compernolle, G.J. Morales. Phys. Plasmas, 26, 022105 (2019). DOI: 10.1063/1.5063597
  25. S. Shinohara, S. Horii. Jpn. J. Appl. Phys., Part 1: Regular Papers and Short Notes and Review Papers, 46, 4276 (2007). DOI: 10.1143/JJAP.46.4276
  26. K. Nagaoka, A. Okamoto, S. Yoshimura, M.Y. Tanaka. J. Phys. Soc. Jpn., 70, 131 (2001). DOI: 10.1143/JPSJ.70.131
  27. S. Shinohara, N. Matsuoka, S. Matsuyama. Phys. Plasmas, 8, 1154 (2001). DOI: 10.1063/1.1350663

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru