The ion-solid interaction potential determination from the backscattered particles spectra
Babenko P. Yu.1, Zinoviev A. N.1, Mikhailov V. S.1, Tensin D.S.1, Shergin A. P.1
1Ioffe Institute, St. Petersburg, Russia
Email: babenko@npd.ioffe.ru, zinoviev@inprof.ioffe.ru, chiro@bk.ru, daria.tensin@gmail.com, a.shergin@mail.ioffe.ru
The values of the atomic particle-solid potential were obtained for the first time from experimental data on the energy spectra and angular dependences of backscattered particles. The proposed procedure for determining the potential has never been applied previously. It is shown that the obtained data do not depend on the potential approximation used. The ion-solid interaction potential differs markedly from the potential describing collisions in the gas phase. The screening constant increases by 10-15%. The increase in screening is due to an increase in the density of the electron gas in the region between the incident particle and scattering center. Keywords: interatomic interaction potential, energy spectra, scattering of atomic particles on the surface.
- G. Moliere, Z. Naturforsch. A., 2 (3), 133 (1947). DOI: 10.1515/zna-1947-0302
- J.F. Ziegler, J.P. Biersack, U. Littmark, The stopping and range of ions in solids. Ser.: Stopping and range of ions in matter (Pergamon, N.Y., 1985)
- W. Lenz, Z. Phys., 77 (11-12), 713 (1932). DOI: 10.1007/BF01342150
- H. Jensen, Z. Phys., 77 (11-12), 722 (1932). DOI: 10.1007/BF01342151
- W.D. Wilson, L.G. Haggmark, J.P. Biersack, Phys. Rev. B, 15 (5), 2458 (1977). DOI: 10.1103/PhysRevB.15.2458
- A.N. Zinoviev, Nucl. Instr. Meth. Phys. Res. B, 269 (9), 829 (2011). DOI: 10.1016/j.nimb.2010.11.074
- A.N. Zinoviev, K. Nordlund, Nucl. Instr. Meth. Phys. Res. B, 406 (Pt B), 511 (2017). DOI: 10.1016/j.nimb.2017.03.047
- D.S. Meluzova, P.Yu. Babenko, A.P. Shergin, K. Nordlund, A.N. Zinoviev, Nucl. Instr. Meth. Phys. Res. B, 460, 4 (2019). DOI: 10.1016/j.nimb.2019.03.037
- A.N. Zinoviev, P.Yu. Babenko, K. Nordlund, Nucl. Instr. Meth. Phys. Res. B, 508, 10 (2021). DOI: 10.1016/j.nimb.2021.10.001
- A. Agrawal, R. Mishra, L. Ward, K.M. Flores, W. Windl, Modelling Simul. Mater. Sci. Eng., 21 (8), 085001 (2013). DOI: 10.1088/0965-0393/21/8/085001
- C. Bjorkas, N. Juslin, H. Timko, K. Vortler, K. Nordlund, K. Henriksson, P. Erhart, J. Phys.: Condens. Matter, 21 (44), 445002 (2009). DOI: 10.1088/0953-8984/21/44/445002
- M.-C. Marinica, L. Ventelon, M.R. Gilbert, L. Proville, S.L. Dudarev, J. Marian, G. Bencteux, F. Willaime, J. Phys.: Condens. Matter, 25 (39), 395502 (2013). DOI: 10.1088/0953-8984/25/39/395502
- B. Bruckner, T. Strapko, M.A. Sortica, P. Bauer, D. Primetzhofer, Nucl. Instr. Meth. Phys. Res. B, 470, 21 (2020). DOI: 10.1016/j.nimb.2020.02.018
- P.Yu. Babenko, D.S. Meluzova, A.P. Solonitsyna, A.P. Shergin, A.N. Zinoviev, JETP, 128 (4), 523 (2019). DOI: 10.1134/S1063776119030014
- V.I. Shulga, Rad. Eff., 100 (1-2), 71 (1986). DOI: 10.1080/00337578608208737
- D.S. Meluzova, P.Yu. Babenko, A.P. Shergina, A.N. Zinoviev, J. Synch. Investig., 13 (2), 335 (2019). DOI: 10.1134/S1027451019020332
- S.N. Markin, D. Primetzhofer, S. Prusa, M. Brunmayr, G. Kowarik, F. Aumayr, P. Bauer, Phys. Rev. B, 78 (19), 195122 (2008). DOI: 10.1103/PhysRevB.78.195122
- H. Verbeek, W. Eckstein, R.S. Bhattacharya, J. Appl. Phys., 51 (3), 1783 (1980). DOI: 10.1063/1.327740
- O.B. Firsov, Sov. Phys. JETP, 6 (3), 534 (1958).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.