The ion-solid interaction potential determination from the backscattered particles spectra
Babenko P. Yu.1, Zinoviev A. N.1, Mikhailov V. S.1, Tensin D.S.1, Shergin A. P.1
1Ioffe Institute, St. Petersburg, Russia
Email: babenko@npd.ioffe.ru, zinoviev@inprof.ioffe.ru, chiro@bk.ru, daria.tensin@gmail.com, a.shergin@mail.ioffe.ru

PDF
The values of the atomic particle-solid potential were obtained for the first time from experimental data on the energy spectra and angular dependences of backscattered particles. The proposed procedure for determining the potential has never been applied previously. It is shown that the obtained data do not depend on the potential approximation used. The ion-solid interaction potential differs markedly from the potential describing collisions in the gas phase. The screening constant increases by 10-15%. The increase in screening is due to an increase in the density of the electron gas in the region between the incident particle and scattering center. Keywords: interatomic interaction potential, energy spectra, scattering of atomic particles on the surface.
  1. G. Moliere, Z. Naturforsch. A., 2 (3), 133 (1947). DOI: 10.1515/zna-1947-0302
  2. J.F. Ziegler, J.P. Biersack, U. Littmark, The stopping and range of ions in solids. Ser.: Stopping and range of ions in matter (Pergamon, N.Y., 1985)
  3. W. Lenz, Z. Phys., 77 (11-12), 713 (1932). DOI: 10.1007/BF01342150
  4. H. Jensen, Z. Phys., 77 (11-12), 722 (1932). DOI: 10.1007/BF01342151
  5. W.D. Wilson, L.G. Haggmark, J.P. Biersack, Phys. Rev. B, 15 (5), 2458 (1977). DOI: 10.1103/PhysRevB.15.2458
  6. A.N. Zinoviev, Nucl. Instr. Meth. Phys. Res. B, 269 (9), 829 (2011). DOI: 10.1016/j.nimb.2010.11.074
  7. A.N. Zinoviev, K. Nordlund, Nucl. Instr. Meth. Phys. Res. B, 406 (Pt B), 511 (2017). DOI: 10.1016/j.nimb.2017.03.047
  8. D.S. Meluzova, P.Yu. Babenko, A.P. Shergin, K. Nordlund, A.N. Zinoviev, Nucl. Instr. Meth. Phys. Res. B, 460, 4 (2019). DOI: 10.1016/j.nimb.2019.03.037
  9. A.N. Zinoviev, P.Yu. Babenko, K. Nordlund, Nucl. Instr. Meth. Phys. Res. B, 508, 10 (2021). DOI: 10.1016/j.nimb.2021.10.001
  10. A. Agrawal, R. Mishra, L. Ward, K.M. Flores, W. Windl, Modelling Simul. Mater. Sci. Eng., 21 (8), 085001 (2013). DOI: 10.1088/0965-0393/21/8/085001
  11. C. Bjorkas, N. Juslin, H. Timko, K. Vortler, K. Nordlund, K. Henriksson, P. Erhart, J. Phys.: Condens. Matter, 21 (44), 445002 (2009). DOI: 10.1088/0953-8984/21/44/445002
  12. M.-C. Marinica, L. Ventelon, M.R. Gilbert, L. Proville, S.L. Dudarev, J. Marian, G. Bencteux, F. Willaime, J. Phys.: Condens. Matter, 25 (39), 395502 (2013). DOI: 10.1088/0953-8984/25/39/395502
  13. B. Bruckner, T. Strapko, M.A. Sortica, P. Bauer, D. Primetzhofer, Nucl. Instr. Meth. Phys. Res. B, 470, 21 (2020). DOI: 10.1016/j.nimb.2020.02.018
  14. P.Yu. Babenko, D.S. Meluzova, A.P. Solonitsyna, A.P. Shergin, A.N. Zinoviev, JETP, 128 (4), 523 (2019). DOI: 10.1134/S1063776119030014
  15. V.I. Shulga, Rad. Eff., 100 (1-2), 71 (1986). DOI: 10.1080/00337578608208737
  16. D.S. Meluzova, P.Yu. Babenko, A.P. Shergina, A.N. Zinoviev, J. Synch. Investig., 13 (2), 335 (2019). DOI: 10.1134/S1027451019020332
  17. S.N. Markin, D. Primetzhofer, S. Prusa, M. Brunmayr, G. Kowarik, F. Aumayr, P. Bauer, Phys. Rev. B, 78 (19), 195122 (2008). DOI: 10.1103/PhysRevB.78.195122
  18. H. Verbeek, W. Eckstein, R.S. Bhattacharya, J. Appl. Phys., 51 (3), 1783 (1980). DOI: 10.1063/1.327740
  19. O.B. Firsov, Sov. Phys. JETP, 6 (3), 534 (1958).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru