Controllable formation of TiO2-rutile nanostructures with a specified morphology using thermal oxidation technique
Khubezhov S. A. 1,2,3, Ponkratova E. Yu.2, Karsakova M. E.2, Prigodich V. V.4, Il’in O. I. 1, Silaev I. V.3, Tvauri I. V.3, Yakimchuk D. V.4, Kaniukov E. Yu. 5, Zuev D. A. 2
1Institute of Nanotechnologies, Electronics and Equipment Engineering, Southern Federal University, Taganrog, Russia
2ITMO University, St. Petersburg, Russia
3Khetagurov North Ossetian State University, Vladikavkaz, Russia
4Scientific and Practical Materials Research Center, National Academy of Sciences of Belarus, Minsk, Belarus
5National University of Science and Technology MISiS, Moscow, Russia
Email: soslan.khubezhov@gmail.com

PDF
Titanium dioxide nanostructures are formed by a simple one-stage method of thermal oxidation of titanium in the temperature range of 700-900oC. The structures were studied by high-resolution electron microscopy and X-ray diffraction. It is shown that, depending on the temperature, nanostructures in the form of crystallites, granules, and dendrites of TiO2-rutile are formed on the surface of metallic titanium. The proposed method is promising for the large-scale creation of advanced functionalized TiO2 surfaces applicable in catalysis and sensorics. Keywords: nanostructures, titanium dioxide, thermal oxidation, morphology, dendrites.
  1. C. Wang, D. Astruc, Chem. Soc. Rev., 43 (20), 7188 (2014). DOI: 10.1039/C4CS00145A
  2. G. vZerjav, M. Rovskarivc, J. Zavavsnik, J. Kovavc, A. Pintar, Appl. Sur. Sci., 579, 152196 (2022). DOI: 10.1016/j.apsusc.2021.152196
  3. M. Murdoch, G.I.N. Waterhouse, M.A. Nadeem, J.B. Metson, M.A. Keane, R.F. Howe, J. Llorca, H. Idriss, Nature Chem., 3, 489 (2011). DOI: 10.1038/nchem.1048
  4. D.A.H. Hanaor, C.C. Sorrell, J. Mater. Sci., 46 (4), 855 (2011). DOI: 10.1007/s10853-010-5113-0
  5. S.V. Bulyarskiy, G.G. Gusarov, D.A. Koiva, G.A. Rudakov, Phys. Solid State, 63, 1611 (2021). DOI 10.1134/S1063783421100061
  6. A.A. Sivkov, D.Yu. Gerasimov, D.S. Nikitin, Tech. Phys. Lett., 43, 16 (2017). DOI: 10.1134/S1063785016120105
  7. T. Krekeler, S.S. Rout, G.V. Krishnamurthy, M. Stormer, M. Arya, A. Ganguly, D.S. Sutherland, S.I. Bozhevolnyi, M. Ritter, K. Pedersen, A.Yu. Petrov, M. Eich, M. Chirumamilla, Adv. Opt. Mater., 9 (16), 2100323 (2021). DOI: 10.1002/adom.202100323
  8. M. Okrusch, R. Hock, U. Schussler, A. Brummer, M. Baier, H. Theisinger, Am. Mineral., 88 (7), 986 (2003). DOI: 10.2138/am-2003-0706
  9. X. Bokhimi, A. Morales, F. Pedraza, J. Solid State Chem., 169 (2), 176 (2002). DOI: 10.1016/S0022-4596(02)00046-4
  10. K. Sugiyama, Y. Takeuchi, Z. Kristallogr. --- Cryst. Mater., 194 (1-4), 305 (1991). DOI: 10.1524/zkri.1991.194.14.305
  11. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst., 11, 102 (1978). DOI: 0.1107/S0021889878012844

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru