Microwave Resonant Spectroscopy of Semiconductors with Micrometer Resolution
Reznik A. N. 1, Vostokov N. V.1
1Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: reznik@ipm.sci-nnov.ru, vostokov@ipm.sci-nnov.ru

PDF
We have proposed and experimentally verified a local method of microwave resonant spectroscopy of semiconductors. The microwave circuit of the spectrometer based on the Cascade Microtech probe station is equipped with a coaxial resonator of special geometry. As result, the measurement accuracy of the previously developed volt-impedance spectroscopy method was greatly increased. A technique for spectrometer calibration and resonant measurements of the complex impedance of the probe-sample system has been developed. We have measured the impedance of test structures with Schottky contacts of 30-60 μm in diameter on a single-crystal GaAs wafer at several discrete frequencies in the range of 50-250 MHz. The nontrivial resistive properties of the structures are studied, which consist of the excess resistance that is 1-2 orders higher than the spreading resistance for the alternating current in the unperturbed region of the semiconductor. The discovered effect is presumably associated with the a.c. charge modulation on deep levels of the semiconductor. A model calculation of the impedance spectrum has been performed, which demonstrates a good agreement with the experimental spectra. Keywords: Microwave microscope, near field, probe, resonator, impedance, semiconductor.
  1. J.F. Power. Rev. Sci. Instrum., 73, 4057 (2002). DOI: 10.1063/1.1517054
  2. J. Krupka. Meas. Sci. Technol., 24, 062001 (2013). DOI: 10.1088/0957-0233/24/6/062001
  3. K. Lai, W. Kundhikanjana, M.A. Kelly, Z.-X. Shen. Appl. Nanosci., 1, 13 (2011). DOI: 10.1007/s13204-011-0002-7
  4. C. Gao, T. Wei, F. Duewer, Y. Lu, X.-D. Xiang. Appl. Phys. Lett., 71, 1872 (1997)
  5. V.V. Talanov, A. Scherz, R.L. Moreland, A.R. Schwartz. Appl. Phys. Lett., 88, 134106 (2006). DOI: 10.1063/1.2189147
  6. H.P. Huber, I. Humer, M. Hochleitner, M. Fenner, M. Moertelmaier, C. Rankl, A. Imtiaz, T.M. Wallis, H. Tanbakuchi, P. Hinterdorfer, P. Kabos, J. Smoliner, J.J. Kopanski, F. Keinberger. J. Appl. Phys., 111, 014301 (2012). DOI: 10.1063/1.3672445
  7. A. Tselev, N.V. Lavrik, I. Vlassiouk, D.P. Briggs, M. Rutgers, R. Proksh, S.V. Kalinin. Nanotechnology, 23, 385706 (2012). DOI: 10.1088/0957-4484/23/38/385706
  8. J. Lee, C.J. Long, H. Yang, X.-D. Xiang, I. Takeuchi. Appl. Phys. Lett., 97, 18311 (2010). DOI: 10.1063/1.3514243
  9. S. Berweger, T.M. Wallis, P. Kabos. IEEE Micrwave Mag., 21, 36 (2020). DOI: 10.1109/MMM.2020.3008305
  10. G. Gramse, M. Kasper, L. Fumagalli, G. Gomila, P. Hinterdorfer, F. Kienberger. Nanotechnology, 25, 145703 (2014). DOI: 10.1088/0957-4484/14/38/145703
  11. O. Amster, F. Stanke, S. Friedman, Y. Yang, St.J. Dixon-Warren, B. Drevniok. Microelectron. Reliability, 76-77, 214 (2017). DOI: 10.1016/j.microrel.2017.07.082
  12. S. Hommel, N. Killat, A. Altes, T. Schweinboeck, F. Kreupl. Microelectron. Reliability, 76-77, 221 (2017). DOI: 10.1016/j.microrel.2017.06.050
  13. S. Berweger, G.A. MacDonald, M. Yang, K.J. Coakley, J.J. Berry, K. Zhu, F.W. DelRio, T.M. Wallis, P. Kabos. NanoLett., 17, 1796 (2017). DOI: 10.1021/acs.nanolett.6b05119
  14. A. Buchter, J. Hoffman, A. Delvallee, E. Brinciotti, D. Hapiuk, C. Licitra, K. Louarn, A. Arnoult, G. Almuneau, F. Piquemal, M. Zeier, F. Kienberger. Rev. Sci. Instrum., 89, 023704 (2018). DOI: 10.1063/1.5015966
  15. A.N. Reznik, E.V. Demidov. J. Appl. Phys., 113, 094501 (2013). DOI: 10.1063/1.4794003
  16. A.N. Reznik, S.A. Korolyov. J. Appl. Phys., 119, 094504 (2016). DOI: 10.1063/1.4943068
  17. A.N. Reznik, S.A. Korolyov, M.N. Drozdov. J. Appl. Phys., 121, 164503 (2017). DOI: 10.1063/1.4982676
  18. S.A. Korolyov, A.N. Reznik. Rev. Sci. Instrum., 89, 023706 (2018). DOI: 10.1063/1.5013113
  19. B.T. Rosner, D.W. Van der Weide. Rev. Sci. Instrum., 73, 2505 (2003). DOI: 10.1063/1.1482150
  20. S.M. Anlage, V.V. Talanov, A.R. Schwartz. "Principles of Near-Field Microwave microscopy", in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, ed. by S. Kalinin, A. Gruverman (Springer Verlag, Berlin, 2007), p. 215-253
  21. A. Imtiaz, T.M. Wallis, P. Kabos. IEEE Micrwave Mag., 15, 52 (2014). DOI: 10.1109/MMM.2013.2288711
  22. D.E. Steinhauer, C.P. Vlahacos, S.K. Dutta, F.C. Wellstood, S.M. Anlage. Appl. Phys. Lett., 71, 1736 (1997)
  23. C. Gao, X.-D. Xiang. Rev. Sci. Instrum., 69, 3846 (1998)
  24. C. Gao, B. Hu, P. Zhang, M. Huang, W. Liu, I. Takeuchi. Appl. Phys. Lett., 84, 4647 (2004). DOI: 10.1063/1.1759389
  25. A.N. Reznik, N.V. Yurasova. J. Appl. Phys., 98, 114701 (2005). DOI: 10.1063/1.2138798
  26. Z. Wang, M.A. Kelly, Z.-X. Shen, L. Shao, W.-K. Chu, H. Edwards. Appl. Phys. Lett., 86, 153118 (2005). DOI: 10.1063/1.1891296
  27. A. Imtiaz, S.M. Anlage. J. Appl. Phys., 100, 044304 (2006). DOI: 10.1063/1.2234801
  28. T. Nozokido, M. Ishido, R. Seto, J. Bae. J. Appl. Phys., 118, 114905 (2015). DOI: 10.1063/1.4931149
  29. A. Imtiaz, T. Baldwin, H.T. Nembach, T.M. Wallis, P. Kabos. Appl. Phys. Lett., 90, 243105 (2007). DOI: 10.1063/1.2748307
  30. A.N. Reznik, V.V. Talanov. Rev. Sci. Instrum., 79, 113708 (2008). DOI: 10.1063/1.3020705
  31. A.N. Reznik, N.V. Vostokov, N.K. Vdovicheva, S.A. Korolyov, V.I. Shashkin. J. Appl. Phys., 122, 244505 (2017). DOI: 10.1063/1.4995330
  32. A.N. Reznik, N.V. Vostokov, N.K. Vdovicheva, V.I. Shashkin. Tech. Phys., 64 (11), 1859 (2020). DOI: 10.1134/S1063784220110237
  33. A.N. Reznik, N.K. Vdovicheva. Tech. Phys., 64 (11), 1722 (2019). DOI: 10.1134/S1063784219110240
  34. D.K. Schroder. Semiconductor Material and Device Characterization (J. Wiley Sons, Inc., 2006)
  35. D.L. Losee. Appl. Phys. Lett., 21, 54 (1972)
  36. D.L. Losee. J. Appl. Phys., 46, 2204 (1975)
  37. J.L. Pautrat, B. Katircioglu, N. Magnea, D. Bensahel, J.C. Pfister, L. Revoil. Solid-St. Electron., 23, 1159 (1980)
  38. A.M. Cowley, H.O. Sorensen. IEEE Trans. Microwave Theory Techn., MTT-14, 588 (1966)
  39. S.M. Sze, K.K. Ng. Physics of Semiconductor Devices (J. Wiley Sons, Inc., 2007)
  40. G.M. Martin, A. Mitonneau, A. Mircea. Electron. Lett., 13, 191 (1977)
  41. G. Vincent, D. Bois, P. Pinard. J. Appl. Phys., 46, 5173 (1975)
  42. C. Ghezzi. Appl. Phys. A., 26, 191 (1981)
  43. S.R. Forrest, O.K. Kim. J. Appl. Phys., 53, 5738 (1982)
  44. A.V. Murel, V.B. Shmagin, V.L. Krukov, S.S. Strelchenko, E.A. Surovegina, V.I. Shashkin. Semicond., 51 (11), 1485 (2017). DOI: 10.1134/S1063782617110197
  45. M. Golosovsky, E. Maniv, D. Davidov, A. Frenkel. IEEE Trans. Instr. Meas., 51, 1090 (2002). DOI: 10.1109/TIM.2002.806006
  46. A. Karbassi, D. Ruf, A.D. Bettermann, C.A. Paulson, D.W. Van der Weide, H. Tanbakuchi, R. Stancliff. Rev. Sci. Instrum., 79, 094706 (2008). DOI: 10.1063/1.2953095
  47. C. Balusek, B. Friedman, B. Oetiker, A. Babajanyan, K. Lee. J. Appl. Phys., 112, 084318 (2012). DOI: 10.1063/1.4759253
  48. D.E. Steinhauer, C.P. Vlahacos, F.C. Wellstood, S.M. Anlage, C. Canedy, R. Ramesh, A. Stanishevsky, J. Melngailis. Rev. Sci. Instrum., 71, 2751 (2000). DOI: 10.1063/1.1150687
  49. J.H. Lee, S. Hyun, K. Char. Rev. Sci. Instrum., 72, 1425 (2001). DOI: 10.1063/1.1342032
  50. K. Lai, W. Kundhikanjana, M. Kelly, Z.X. Shen. Rev. Sci. Instrum., 79, 063703 (2008). DOI: 10.1063/1.2949109
  51. Z. Wei, Y.-T. Cui, E.Y. Ma, S. Johnston, Y. Yang, R. Chen, M. Kelly, Z.-X. Shen, X. Chen. IEEE Trans. Microwave Theory Tech., 64, 1402 (2016). DOI: 10.1109/TMTT.2016.2537801

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru