Model of non-spherical particles' rebound and scattering at high speed interaction with a streamlined surface
Panfilov S. V.1, Tsirkunov Yu. M.1
1Baltic State Technical University "VOENMEKH" named after Marshal D. F. Ustinov, St. Petersburg, Russia
Email: panfilov_sv@rambler.ru, yury-tsirkunov@rambler.ru
A new model is proposed for a non-spherical solid particles' impact interaction with a surface as applied to gas-particle flows over surfaces. The range of a particle impact speed typical for a vehicle flight in a dusty atmosphere is considered. The model is based on the laws of mechanics and experimental data on the restitution coefficient of the particle normal velocity. The tangential force impulse during a particle-surface interaction is assumed to be proportional to both the normal impulse and the mean tangential velocity of the particle contact point. The space orientation of incident particles relative to the surface is considered as random. The rebound of particles of different shape with varying shape parameters and of a particle mixture is studied numerically. Statistical characteristics of particles' rebound and scattering are obtained. Comparison with the known experimental data of numerical results for the mean values of the normal and tangential velocities of the particles' gravity centers in the plane of impact after rebound showed their good agreement. Keywords: dispersed particles, 3D model of impact, numerical investigation, statistical characteristics of rebound and scattering, comparison with experimental data.
- R.I. Nigmatulin. Dynamics of Multiphase Media (Hemisphere, NY., 1990), v. 1
- A.Yu. Varaksin. High Temperature, 56 (2), 275--295 (2018)
- W. Tabakoff, M.F. Malak, A. Hamed. AIAA J., 25 (5), 721--726 (1987)
- M. Sommerfeld, S. Lain. Powder Technology, 332, 253--264 (2018)
- H. Sommerfeld, Ch. Koch, A. Schwarz, A. Beck. Wear, 470--471, 203626 (2021). DOI: https://doi.org/10.1016/ j.wear.2021.203626
- B.V.R. Vittal, W. Tabakoff. AIAA J., 25 (5), 648--654 (1987)
- Yu.M. Davydov, I.Kh. Enikeev, R.I. Nigmatulin. J. Appl. Mech. Tech. Phys., 31 (6), 860--867 (1990)
- D.L. Reviznikov, A.V. Sposobin, I.E. Ivanov. High Temperature, 56 (6), 884--889 (2018)
- S. Matsumoto, S. Saito. J. Chem. Engr. Jpn., 3, 83--92 (1970)
- M. Sommerfeld. Int. J. Multiphase Flow, 18 (6), 905--926 (1992)
- C.T. Crowe, J.D. Schwarzkopf, M. Sommerfeld, Y. Tsuji. Multiphase Flows with Droplets and Particles, 2nd Edition (CRC Press, Boca Raton, USA, 2012), ISBN 978-1-4398-4050-4
- B. Quintero, S. Lain, M. Sommerfeld. Powder Technology, 380, 526--538 (2021)
- A.L. Stasenko. J. Eng. Phys. Thermophys., 80 (5), 885--891 (2007)
- V.A. Lashkov. Vestnik of SPbGU, Ser. 1, (4), 127--136 (2010)
- A.S. Zotikov, V.A. Lashkov. Vestnik of SPbGU, Ser. 1, 1 (2), 245--253 (2014)
- S. Singh, D. Tafti. Proc. of ASME Turbo Expo 2013, June 3-4, (San Antonio, Texas, USA, 2013), paper GT2013-95623, 1--9 (2013)
- S. Ray, T. Kempe, J. Froelich. Int. J. Multiphase Flow, 76, 101--110 (2015)
- S.M. Whitaker, J.P. Bons. Proc. of ASME Tirbo Expo 2018, June 11-15, (Oslo, Norway, 2018), paper GT2018-77158, 1--14 (2018)
- S.V. Panfilov, Yu.M. Tsirkunov. J. Appl. Mech. Tech. Phys., 49 (2), 222--230 (2008)
- N.V. Butenin, Ya.L. Lunts, D.R. Merkin. Theoretical mechanics course. VOL. 2. Dynamics (Nauka, Fizmatlit, M., 1979)
- V.A. Lashkov. J. Eng. Phys. Thermophys., 60 (2), 154--159 (1991)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.