Influence of Ba atom adsorption and implantation of Ba+ ions on the electronic structure of single crystalline Ge
D.A. Tashmukhamedova1, B.E. Umirzakov1, Y.S. Ergashov1, M.B. Yusupzhanova1, R.M. Yorkulov1
1Tashkent State Technical University, Tashkent, Uzbekistan
Email: ftmet@mail.ru

PDF
The effect of the adsorption of Ba atoms with a thickness of theta≤3-4 monolayers and the implantation of Ba+ ions with an energy of E0=0.5-2 keV on the density of states of electrons in the valence band, the parameters of the energy bands, and the emission and optical properties of Ge(111) has been studied for the first time. It is shown that during the adsorption of Ba atoms with theta=1 monolayer, the value of the thermoelectric work function φ decreases by ~ 1.9 eV, and the value of the secondary electron emission coefficient and the quantum yield of photoelectrons Y increases by 1.5-2 times. In the case of implantation of Ba+ ions with E0=0.5 keV at an irradiation dose D=6·1016 cm-2, the density of state of valence electrons and the parameters of the energy bands change sharply; the quantum yield of photoelectrons increases by a factor of 2 or more. The observed changes are explained by the formation on the surface of a thin (~25-30 Angstrem) amorphous doped layer consisting of nanoscale phases of the Ba-Ge type (~60-65 at.%). And excess (unbound) Ba and Ge atoms. In this case, the band gap Eg decreases by ~ 0.3 eV. Keywords: Ion implantation, quantum yield of photoelectrons, emission efficiency, heating, band gap, amorphous layer.
  1. A.S. Deryabin, A.E. Dolbak, M.Yu. Esin, V.I. Mashanov, A.I. Nikiforov, O.P. Pchelyakov, L.V. Sokolov, V.A. Timofeev. Optoelectron., Instrum. Data Process. 56 (5), 470 (2020). DOI: 10.15372/AUT20200503
  2. O.M. Sreseli,M.A. Elistratova,D.N. Goryachev,E.V. Beregulin, V.N. Nevedomskii,N.A. Bert,A.V. Ershov. Semiconductors, 54 (10), 1315 (2020). DOI: 10.1134/S1063782620100292
  3. A.V. Dvurechenskii, A.I. Yakimov, A.V. Nenashev, A.F. Zinov'eva. Phys. Solid State, 46 (1), 56 (2004)
  4. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica,S. Mantl,Z. Ikonic,M. Luysberg,S. Chiussi,J.M. Hartmann, H. Sigg,J. Faist,D. Buca, D. Grutzmacher. Nature Photon., 9 (2), 88 (2015)
  5. G. Masini, L. Colace, G. Assanto. Mat. Sci. Eng. B, 89, 2 (2002). DOI: 10.1016/S0921-5107(01)00781-4
  6. L. Pavesi. J. Phys. Cond. Mat., 15 (26), R1169 (2003). DOI: 10.1088/0953-8984/15/26/201
  7. Z.F. Krasil'nik, A.V. Novikov. Phys.Usp., 43,295 (2000). DOI: 10.1070/PU2000v043n03ABEH000703
  8. A.A. Druzhinin, I.P. Ostrovskii, Yu.N. Khoverko, S.I. Nichkalo, R.N. Koretskii. Tekhnol. Konstr. Elektron. Appar., No. 5, 19 (2012) (in Russian)
  9. I.G. Neizvestny. Optoelectron., Instrum. Data Process., 52 (5), 421 (2016). DOI: 10.15372/AUT20160501
  10. Yu.B. Bolkhovityanov, A.S. Deryabin, A.K. Gutakovskii, L.V. Sokolov. J. Cryst. Growth, 483, 265 (2018)
  11. Sh. Saito,A.Z. Al-Attili,K. Oda,Y. Ishikawa. Semicond. Sci. Technol., 31 (4) 043002 (2016). DOI: 10.1088/0268-1242/31/4/043002
  12. J. Liu,L.C. Kimerling,J. Michel. Semicond. Sci. Tech., 27 (9), 094006 (2012). DOI: 10.1088/0268-1242/27/9/094006
  13. D.V. Yurasov, N.A. Baidakova, A.N. Yablonskiy, A.V. Novikov. Semiconductors, 54 (7), 811 (2020). DOI: 10.21883/FTP.2020.07.49511.9379
  14. A.S. Zhuravlev, S. Dickmann, L.V. Kulik, I.V. Kukushkin. Phys. Rev. B, 89 (16), 161301 (2014). DOI: 10.1103/PhysRevB.89.161301
  15. F.Yu. Solomkin,A.S. Orekhov,S.V. Novikov,N.A. Arkharova, G.N. Isachenko, N.V. Zaitseva,N.V. Sharenkova,A.U. Samunin, V.V. Klechkovskaya, A.T. Burkov. Semiconductors, 53,761 (2019). DOI: 10.1134/S1063782619060253
  16. L.K. Orlov, S.V. Ivin, V.M. Fomin. Tech. Phys., 62 (3), 449 (2017)
  17. B.E. Umirzakov, D.A. Tashmukhamedova, E.U. Boltaev, A.A. Dzhurakhalov. Mater. Sci. Eng. B, 101, 124 (2003)
  18. Y.S. Ergashov, D.A. Tashmukhamedova, B.E. Umirzakov. J. Surf. Investigation: X-ray, Synchrotron and Neutron Techniques, 11 (2), 480 (2017). DOI: 10.1134/S1027451017020252
  19. R.M. Bayazitov, R.I. Batalov, E.I. Terukov, V.Kh. Kudoyarova. Phys. Solid State, 43 (9), 1633 (2001)
  20. Y.S. Ergashov, D.A. Tashmukhamedova, E. Rabbimov. J. Surf. Investigation. X-ray, Synchrotron and Neutron Techniques, 9 (2), 350 (2015). DOI: 10.1134/S1027451015020287
  21. B.E. Umirzakov,D.A. Tashmukhamedova,A.K. Tashatov, N.M. Mustafoeva. Tech. Phys., 64 (5),708 (2019).DOI: 10.1134/S1063784219050244
  22. B. Schuller, R. Carius, S. Mantl. J. Appl. Phys., 94, 207 (2003).DOI: 10.1063/1.1576902
  23. B.E. Umirzakov, D.A. Tashmukhamedova,D.M. Muradkabilov, K.K. Boltaev. Tech. Phys., 58 (6),841 (2013)
  24. R. Geiger, T. Zabel, H. Sigg. Front. Mater., 2, 52 (2015). https://doi.org/10.3389/fmats.2015.00052
  25. R.I. Batalov, R.M. Bayazitov, G.A. Novikov, V.A. Shustov, N.M. Lyadov, A.V. Novikov, P.A. Bushuikin, N.A. Baidakova, M.N. Drozdov, P.A. Yunin. Optoelectron., Instrum. Data Process., 55 (5), 423 (2019). DOI: 10.15372/AUT20190501
  26. R. Pillarisetty. Nature, 479, 324 (2011). https://doi.org/10.1038/nature10678
  27. E. Bruno, G.G. Scapelatto, G. Bisognin. E. Carria,L. Romano, A. Carnera, F. Priolo. J. Appl. Phys, 108, 124902 (2010). https://doi.org/10.1063/1.3520671

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru