Scanning naation as an instrument of studying local mechanical properties distribution in wood and a new technique for dendrochronology
Golovin Yu. I. 1,2, Tyurin A. I. 1, Gusev A. A. 1,3,4, Matveev S. M. 1,3, Golovin D. Yu. 1, Samodurov A. A. 1, Vasyukova I. A. 1, Yunak M.A. 1, Kolesnikov E. A. 4, Zakharova O. V. 5,4
1Institute for Nanotechnology and Nanomaterials, G.R. Derzhavin Tambov State University,Tambov, Russia
2Lomonosov Moscow State University, Moscow, Russia
3Voronezh State University of Forestry and Technologies named after G.F. Morozov, Voronezh, Russia
4National University of Science and Technology MISiS, Moscow, Russia
5Tambov State University, Tambov, Russia
Email: yugolovin@yandex.ru, tyurin@tsu.tmb.ru, nanosecurity@mail.ru, lisovod@bk.ru, tarlin@yandex.ru, samsasha@yandex.ru, vasyukovaia@gmail.com, mascha150383@mail.ru, kea.misis@gmail.com, olgazakharova1@mail.ru

PDF
The paper presents the results of scanning of mechanical properties of coniferous (common pine Pinus sylvestris) and deciduous (small-leaved lime Tilia cordata and common oak Quercus robur) trees wood using naation on crosscut face. Manifold increase in microhardness H and Young's modulus E has been observed between early and late wood in every annual growth ring. Significant differences in intraring radial dependencies of H and E have been found among studied species. For all studied species the average values of E and H of early wood in each annual ring are found to be independent from ring width, while such dependence for late wood is weak at most. The ring widths measured by naation coincide with the ones measured by standard optical method within 2-3%. The developed technique and obtained results can be useful 1) to amend the understanding the origins of macromechanical properties of various wood species and their dependence upon microstructural characteristics and growth conditions, 2) to optimize the technologies of growing, reinforcement and subsequent usage of the wood, 3) to develop new independent high resolution methods in dendrochronology. Keywords: naation, nano-/microhardness and Young's modulus scanning, tree annual growth rings, dendrochronology.
  1. Handbook of Nanocellulose and Cellulose Nanocomposites, eds. H. Kargarzadeh, I. Ahmad, S. Thomas, A. Dufresne (Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim, Germany, 2017)
  2. R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood. Chem. Soc. Rev., 40 (7), 3941 (2011). DOI: 10.1039/C0CS00108B
  3. M. Reza, E. Kontturi, A.-S. Jaaskelainen, T. Vuorinen. Bioresources, 10 (3), 6230 (2015). DOI: 10.15376/biores.10.3
  4. A. Balzano, K. Novak, M. Humar, K. v Cufar. Les/Wood, 68 (2), 5 (2019). DOI: 10.26614/les-wood.2019.v68n02a01
  5. J. Thomas, D.A. Collings. In book: Wood is Good. Current Trends and Future Prospects in Wood Utilization, eds. K.K. Pandey, V. Ramakantha, S.S. Chauhan, A.N.A. Kumar (Springer Nature Singapore Pte Ltd., 2017), p. 29. DOI: 10.1007/978-981-10-3115-1_3
  6. M. Broda, C.-M. Popescu. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 209, 280 (2019). DOI: 10.1016/j.saa.2018.10.057
  7. E.E.N. Alves, D.R.O. Rodriguez, P.A. Rocha, L. Vergutz, L.S. Junior, D. Hesterberg, L.C.R. Pessenda, M. Tomazello-Filho, L.M. Costa. Results in Chem., 3, 100121 (2021). DOI: 10.1016/j.rechem.2021.100121
  8. J. Tintner, B. Spangl, F. Reiter, E. Smidt, M. Grabner. Wood Sci. Technol., 54, 313 (2020). DOI: 10.1007/s00226-020-01160-x
  9. C.M. Popescu, D. Jones, D. Krzisnik, M. Humar. J. Molecular Structure, 1200, 127133 (2020). DOI: 10.1016/j.molstruc.2019.127133
  10. N. Gierlinger. Appl. Spectr. Rev., 53 (7), 517 (2018). DOI: 10.1080/05704928.2017.1363052
  11. T. Kanbayashi, Y. Kataoka, A. Ishikawa, M. Matsunaga, M. Kobayashi, M. Kiguchi. J. Photochem. Photobiol., B: Biology, 187, 136 (2018). DOI: 10.1016/j.jphotobiol.2018.08.016
  12. A. Saletnik, B. Saletnik, C. Puchalski. Molecules, 26, 1537 (2021). DOI: 10.3390/molecules26061537
  13. K. Elsayad, G. Urstoger, C. Czibula, C. Teichert, J. Gumulec, J. Balvan, M. Pohlt, U. Hirn. Cellulose, 27, 4209 (2020). DOI: 10.1007/s10570-020-03075-z
  14. X. Kang, A. Kirui, M.C.D. Widanage, F. Mentink-Vigier, D.J. Cosgrove, T. Wang. Nature Commun., 10, 347 (2019). DOI: 10.1038/s41467-018-08252-0
  15. T. Scharnweber, A. Hevia, A. Buras, E. van der Maaten, M. Wilmking. Sci. Total. Environ, 566--567, 1245 (2016). DOI: 10.1016/j.scitotenv.2016.05.182
  16. E. Toumpanaki, D.U. Shah, S.J. Eichhorn. Adv. Mater., 33 (28), 2001613 (2021). DOI: 10.1002/adma.202001613
  17. L.A. Donaldson. IAWA J., 40 (4), 645 (2019). DOI: 10.1163/22941932-40190258
  18. Nanotribology and Nanomechanics. An Introduction, ed. B. Bhushan. 2nd ed. (Springer, Berlin-Heidelberg-NY., 2008)
  19. Nanomechanical Analysis of High Performance Materials, ed. A. Tiwari. (Springer Science + Business Media, Dordrech-Heidelberg-NY.-London, 2014), 348 p
  20. Materials Characterization: Modern Methods and Applications, ed. N.M. Ranganathan (CRC Press, Boca Raton, Florida, 2015)
  21. Yu.I. Golovin. Phys. Solid State, 63 (1), 1 (2021). DOI: 10.21883/FTT.2021.01.50395.171
  22. R. Garcia. Chem. Soc. Rev., 49, 5850 (2020). DOI: 10.1039/d0cs00318b
  23. B.R. Neugirg, S.R. Koebley, H.C. Schniepp, A. Fery. Nanoscale, 8, 8414 (2016). DOI: 10.1039/c6nr00863a
  24. M. Cascione, V. De Matteis, R. Rinaldi, S. Leporatti. Microsc. Res. Technol., 80, 109 (2017). DOI: 10.1002/jemt.22696
  25. A. Melelli, O. Arnould, J. Beaugrand, A. Bourmaud. Molecules, 25, 632 (2020). DOI: 10.3390/molecules25030632
  26. Yu.I. Golovin, V.I. Ivolgin, V.V. Korenkov, N.V. Korenkova, R.I. Ryabko. Kondens. Sredy Mezhfaznye Granitsy, 3 (2), 122 (2001) (in Russian)
  27. Yu.I. Golovin. Phys. Solid State, 50 (12), 2205 (2008). DOI: 10.1134/S1063783408120019
  28. Yu.I. Golovin. Zavod. Lab., 75 (1), 45 (2009) (in Russian)
  29. Yu.I. Golovin, Nairovanie i ego vozmozhnosti (Mashinostroenie, M., 2009) (in Russian)
  30. A.C. Fischer-Cripps. Naation (Springer, NY., 2011)
  31. Handbook of Naation with Biological Applications, ed. M.L. Oyen (Pan Stanford Publishing Pte. Ltd., 2011)
  32. Naation in Materials Science, ed. J. Nemecek (InTech, London, 2012)
  33. Nanomechanical Analysis of High Performance Materials, ed. A. Tiwari (Springer Science + Business Media. Dordrech-Heidelberg-NY.-London, 2014)
  34. Applied Naation in Advanced Materials, eds. A. Tiwari, S. Natarajan (John Wiley \& Sons, NY., 2017)
  35. L.J. Gibson. J. Royal Soc., Interface, 9, 2749 (2012). DOI: 10.1098/rsif.2012.0341
  36. M. Ioelovich. In book: Handbook of Nanocellulose and Cellulose Nanocomposites, eds. H. Kargarzadeh, I. Ahmad, S. Thomas, A. Dufresne (Wiley-VCH Verlag GmbH \& Co. Weinheim, Germany, 2017). p. 51. DOI: 10.1002/9783527689972.ch2
  37. N. Mittal, F. Ansari, K. Gowda, C. Brouzet, P. Chen, P.T. Larsson, S.V. Roth, F. Lundell, L. Wagberg, N.A. Kotov, L.D. Soderberg. ACS Nano. 12 (7), 6378 (2018). DOI: 10.1021/acsnano.8b01084
  38. S. Rongpipi, D. Ye, E.D. Gomez, E.W. Gomez. Frontieres in Plant Sci., 9, 1894 (2019). DOI: 10.3389/fpls.2018.01894
  39. N.V. Perepelkin, F.M. Borodich, A.E. Kovalev, S.N. Gorb. Nanomaterials, 10, 15 (2020). DOI: 10.3390/nano10010015
  40. P. Mania, M. Nowicki. Bull. Polish Academy Sci. Tech. Sci., 68 (5), 1237 (2020). DOI: 10.24425bpasts.2020.134645
  41. A.C. Normand, A.M. Charrier, O. Arnould, A.L. Lereu. Scientific Reports, 11, 5739 (2021). DOI: 10.1038/s41598-021-84994-0
  42. D.M. Meko, J.M. Friedman, R. Touchan, J.R. Edmondson, E.R. Griffin, J.A. Scott. Holocene., 25, 1093 (2015). DOI: 10.1177/0959683615580181
  43. H. Gartner, P. Cherubini, P. Fonti, G. von Arx, L. Schneider, D. Nievergelt, A. Verstege, A. Bast, F.H. Schweingruber, U. Buntgen. J. Visualized Experiments, 97, e52337 (2015). DOI: 10.3791/52337
  44. X. Zhang, J. Li, X. Liu, Z. Chen. J. For. Res., 31 (2), 1002 (2019). DOI: 10.1007/s11676-019-01002-y
  45. R.J. Kaczka, R. Wilson. Dendrochronologia, 68, 125859 (2021). DOI: 10.1016/j.dendro.2021.125859
  46. A. Vannoppen, S. Maes, V. Kint, T. De Mil, Q. Ponette, J. Van Acker, J.V. den Bulcke, K. Verheyen, B. Muys. Dendrochronologia, 44, 66 (2017). DOI: 10.1016/j.dendro.2017.03.003
  47. J.V. den Bulcke, M.A. Boone, J. Dhaene, D. Van Loo, L. Van Hoorebeke, M.N. Boone, F. Wyffels, H. Beeckman, J. Van Acker, T. De Mil. Annals of Botany, 124, 837 (2019). DOI: 10.1093/aob/mcz126
  48. M. Domi nguez-Delmas. Dendrochronologia, 62, 125731 (2020). DOI: 10.1016/j.dendro.2020.125731
  49. J. Martinez-Garcia, I. Stelzner, J. Stelzner, D. Gwerder, P. Schuetz. Dendrochronologia, 69, 125877 (2021). DOI: 10.1016/j.dendro.2021.125877
  50. M. Moria, S. Kuhara, K. Kobayashia, S. Suzuki, M. Yamada, A. Senoo. Dendrochronologia, 57, 125630 (2019). DOI: 10.1016/j.dendro.2019.125630
  51. K. Mayer, M. Grabner, S. Rosner, M. Felhofer, N. Gierlinger. Dendrochronologia, 64, 125781 (2020). DOI: 10.1016/j.dendro.2020.125781
  52. ISO group TC 164/SC 3/WG1 and ASTM E28.06.11. ISO/DIS 14577-1, 2, 3
  53. GOST R 8.748-2011. State System for Ensuring the Uniformity of Measurements. Metallic Materials. Instrumented Indentation Test for Hardness and Materials Parameters. Part 1. Test Method (in Russian)
  54. W.C. Oliver, G.M. Pharr. J. Mater. Res., 7 (6), 1564 (1992). DOI: 10.1557/JMR.1992.1564
  55. W.C. Oliver, G.M. Pharr. J. Mater. Res, 19 (1), 3 (2004). DOI: 10.1557/jmr.2004.19.1.3
  56. W.C. Oliver, G.M. Pharr. MRS Bull., 35 (11), 897 (2010). DOI: 10.1557/mrs2010.717
  57. Yu.I. Golovin, A.I. Tyurin, D.Yu. Golovin, A.A. Samodurov, I.A. Vasyukova. Russ. Phys. J., 63 (11), 2041 (2021). DOI: 10.17223/00213411/63/11/187
  58. Yu.I. Golovin, A.I. Tyurin, A.A. Gusev, S.M. Matveev, D.Yu. Golovin. Pis'ma Zh. Tekh. Fiz., 48 (4), 36 (2022) (in Russian). DOI: 10.21883/PJTF.2022.04.52083.19040
  59. I. Carrillo-Varela, P. Valenzuela, W. Gasitua, R.T. Mendoca. BioResources, 14 (3), 6433 (2019). DOI: 10.15376/biores.14.3.6433-6446
  60. S. Stanzl-Tschegg, W. Beikircher, D. Loidl. Holzforschung, 63, 443 (2009). DOI: 10.1515/HF.2009.085
  61. Y. Wu, X. Wu, F. Yang, H. Zhang, X. Feng, J. Zhang. Forests, 11, 1247 (2020). DOI: 10.3390/f11121247
  62. Y.H. Huang, B.H. Fei, Y. Yu, S. Q. Wang, Z.Q. Shi, R.J. Zhao. Bioresources, 7 (3), 3028 (2012). DOI: 10.15376/biores.7.3.3028-3037
  63. W.T.Y. Tze, S. Wang, T.G. Rials, G.M. Pharr, S.S. Kelley. Composites: Part A. 38, 945 (2007). DOI: 10.1016/J.COMPOSITESA.2006.06.018
  64. J. Wang, L. Wang, D.J. Gardner, S.M. Shaler, Z. Cai. Cellulose, 28, 4511 (2021). DOI: 10.1007/s10570-021-03771-4
  65. X. Wang, Y. Li, Y. Deng, W. Yu, X. Xie, S. Wang. BioResources, 11 (3), 6026 (2016). DOI: 10.15376/biores.11.3.6026-6039
  66. Electronic source. Available at: lesoteka.com
  67. Electronic source. Available at: extxe.com
  68. A.M. Borovikov, B.N. Ugolev. Spravochnik po drevesine: Spravochnik, Ed. B.N. Ugolev (Lesnaya Promyshlennost', M., 1989) (in Russian)
  69. Electronic source. Available at: les.novosibdom.ru
  70. M. Vincent, Q. Tong, N. Terziev, G. Daniel, C. Bustos, W.G. Escobar, I. Duchesne. Wood Sci. Technol., 48 (1), 7 (2013). DOI: 10.1007/s00226-013-0580-5

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru