Features of polymorphic transformation during heating and cooling of cobalt
L. V. Spivak1, N.E. Shchepina2
1Perm State University, Perm, Russia
2Institute of Natural Sciences of Perm State University, Perm, Russia
Email: lspivak2@mail.ru

Differential scanning calorimetry was used to study the regularities of polymorphic α↔β-transformation in polycrystalline cobalt. The value of the activation energy of the α->β-transformation during heating of cobalt (290-50 kJ/mol), enthalpy and entropy, depending on the thermal history of the metal, is determined. It is shown that the mechanisms of recrystallization under heating are closer to the first-order I phase transformations. When cooling under conditions of limited diffusion mobility of cobalt atoms, recrystallization is apparently carried out due to the passage of several diffusion-free mechanisms of phase transformation, implemented in close temperature ranges. Keywords: activation energy, cobalt, calorimetry, polymorphism, enthalpy, entropy.
  1. Ya.S. Umanskii, Yu.A. Skakov. Fizika metallov (Atomizdat, M., 1978) (in Russian)
  2. R. Abbaschian, L. Abbaschian, R.E Reed-Hill. Physical Metallurgy. Principles (Cengage Learning , 2009)
  3. G.N. Haidemenopoulos. Physical Metallurgy. Principles and Design (CRC Press-Taylor and Francis 2018), DOI: 10.1201/9781315211220
  4. A.K. Rai, S. Raju, B. Jeyaganesh, E. Mohandas, R. Sudha, V. Ganesan. J. Nucl. Mater., 383, 215 (2009)
  5. S.A. Oglezneva, L.V. Spivak, M.N. Kachenok, M.N. Portalov. Russ. Metall., 2015, 250 (2015)
  6. L.V. Spivak, N.E. Shchepina. Tech. Phys., 65 (7), 1100 (2020). DOI: 10.21883/JTF.2020.07.49449.381-19
  7. L.V. Spivak, N.E. Shchepina. Tech. Phys., 66 (12), 1353 (2021). DOI: 10.21883/JTF.2021.08.51096.53-21s
  8. W. Betteridge. Progr. in Mater. Sci., 24, 51 (1980)
  9. P.J. Van Ekeren. Handbook of Thermal Analysis and Calorimetry Vol. 1: Principles and Practice, M.E. Brown, editor. (Elsevier Science B., 75, 1998)
  10. V.A. Aleshkevich. Molekulyarnaya fizika (Fizmatlit, M., 2016) (in Russian)
  11. S.M. Sarge, G.W.H. Hohne, W.F. Hemminger. Calorimetry. Fundamentals Instrumentation and Applications (Wiley-VCH Verlag GmbH \& Co. KGaA: Weinheim, Germany, 2014)
  12. A.S. Dobrosavljevic, K.D. Maglic, N.L. Perovic. High Temp.-High Pressures, 21 (3), 317 (1989)
  13. H.E. Kisinger. Analyt. Chem., 29, 1702 (1957)
  14. J.C. Zhao, M.R. Notis. Scripta Metall. Mater., 32 (10), 1671 (1995)
  15. Z.N. Zhou, L. Yang, R.C. Li, J.-G. Li. Intermetallics, 92, 49 (2018)
  16. F. Cardellinia, G. Mazzonea. Phil. Mag. A., 67 (6), 1289 (1993)
  17. A. Muniera, J.E. Bidauxa, R. Schallera, C. Esnoufa. J. Mater. Res., 5 (4), 769 (1990)
  18. A.E. Ray, S.R. Smith. J. Phase Equilibria, 12 (6), 644 (1991)
  19. H. Matsumoto. J. Alloys Compounds, 223 (1), 11 (1995)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru