Effect of low temperature nitrogen plasma composition on hydrophilic and hydrophobic properties of coatings nitrided titanium oxide based
Muslimov A.E.
1, Gadzhiev M. Kh.
2, Emirov R. M.
3, Ismailov A.M.
3, Kanevsky V.M.
11Federal Research Center "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
2Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
3Dagestan State University, Makhachkala, Dagestan Republic, Russia
Email: amuslimov@mail.ru, makhach@mail.ru, aderron@mail.ru, egdada@mail.ru, kanev@crys.ras.ru
Effect of nitrogen plasma composition on structural-phase and elemental composition, topography, mechanical and hydrophobic properties of coatings on the basis of nitrogen-containing titanium oxide during penetration onto sample in open atmosphere is studied. It has been shown that at an equally high microhardness of the order of 25-27 GPa, by controlling the composition of the nitrogen plasma, either hydrophilic (contact angle 73o)) or hydrophobic coatings (contact angle 120o)) can be formed. Keywords: hydrophobicity, hydrophilicity, titanium dioxide, sapphire, low-temperature plasma, nitrogen, contact angle, microhardness.
- M.M. Mikhailov, V.V. Neshchimenko, S.A. Yuryev, Rad. Phys. Chem., 121, 10 (2016). DOI: 10.1016/j.radphyschem.2015.12.006Get
- J. Heinrichs, T. Jarmar, M. Rooth, H. Engqvist, Key Eng. Mater., 361- 363, 689 (2008). DOI: 10.4028/www.scientific.net/KEM.361-363.689
- N. Huang, Y.X. Leng, P. Yang, J.Y. Chen, H. Sun, J. Wang, G.J. Wan, A.S. Zhao, P.D. Ding, Nucl. Instr. Meth. B, 242 (1-2), 18 (2006). DOI: 10.1016/j.nimb.2005.08.080
- P.P. Karjalainen, W. Nammas, Ann. Med., 49 (4), 299 (2017). DOI: 10.1080/07853890.2016.1244353
- R. Li, T. Li, Q. Zhou, Catalysts, 10 (7), 804 (2020). DOI: 10.3390/catal10070804
- M.Kh. Gadzhiev, R.M. Emirov, A.E. Muslimov, M.G. Ismailov, V.M. Kanevsky, Letters to JTP, 47 (9), 44 (2021). DOI: 10.21883/TPL.2022.13.53355.18861
- D.A. Zherebtsov, S.A. Syutkin, V.Y. Pervushin, G.F. Kuznetsov, D.G. Kleshchev, V.A. German, V.V. Viktorov, A.M. Kolmogortsev, A.S. Serikov, JICh, 55 (8), 1271 (2010)
- A.E. Muslimov, A.Sh. Asvarov, N.S. Shabanov, V.M. Kanevsky, Letters to JTP, 46 (19), 15 (2020). DOI: 10.21883/TPL.2022.13.53355.18861
- M.M. Shirolkar, D. Phase, V. Sathe, J. Rodri guez-Carvajal, R.J. Choudhary, S.K. Kulkarni, J. Appl. Phys., 109 (12), 123512 (2011). DOI: 10.1063/1.3594695
- K. Peerawas, T. Abdelhafed, M. Mahamasuhaimi, J. Ausmee, H. Pariyaphan, K. Sakorn, Surf. Interface Anal., 50 (12-13), 1271 (2018). DOI: 10.1002/sia.6518
- E.Kh. Isakaev, O.A. Sinkevich, A.S. Tuftyaev, V.F. Chinnov, TVT, 48 (1), 105 (2010). DOI:10.31857/S0040364420040031
- M.Kh. Gadzhiev, A.S. Tuftyaev, A.E. Muslimov, V.M. Kanevsky, A.M. Ismailov, V.A. Babaev, Letters to JTP, 45 (22), 3 (2019). DOI:10.21883/PJTF.2019.22.48639.17951
- V.F. Chinnov, Experimental Study of Thermal and Nonequilibrium Plasmas of Inert and Molecular Gases, Doct. Thesis. (Institute of High Temperatures, Russian Academy of Sciences, M., 2002)
- Y. Yuan, T.R. Lee, in Surface science techniques, ed. by G. Bracco, B. Holst. Springer Ser. in Surface Sciences (Springer, Berlin-Heidelberg, 2013), vol. 51, p. 3-34
- O.V. Smirnova, A.G. Grebenyuk, O.P. Linnik, N.O. Chorna, V.V. Lobanov, Scientific papers of NAUKMA, 183, 67 (2016)
- J. Balajka, M.A. Hines, W.J.I. DeBenedetti, M. Komora, J. Pavelec, M. Schmid, U. Diebold, Science, 361 (6404), 786 (2018). DOI: 10.1126/science.aat6752
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.